Normalized defining polynomial
\( x^{16} - 88 x^{14} + 2928 x^{12} - 47936 x^{10} + 418966 x^{8} - 1996208 x^{6} + 4988280 x^{4} + \cdots + 1612808 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[16, 0]$ |
| |
| Discriminant: |
\(414692653834021167975731560448\)
\(\medspace = 2^{59}\cdot 449^{2}\cdot 1889^{2}\)
|
| |
| Root discriminant: | \(70.98\) |
| |
| Galois root discriminant: | $2^{141/32}449^{1/2}1889^{1/2}\approx 19527.766249117198$ | ||
| Ramified primes: |
\(2\), \(449\), \(1889\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{16}a^{12}-\frac{1}{4}a^{11}-\frac{1}{8}a^{8}-\frac{3}{8}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}$, $\frac{1}{16}a^{13}-\frac{1}{8}a^{9}-\frac{3}{8}a^{5}+\frac{1}{4}a$, $\frac{1}{90\cdots 92}a^{14}+\frac{32\cdots 75}{11\cdots 74}a^{12}+\frac{95\cdots 91}{45\cdots 96}a^{10}-\frac{16\cdots 49}{56\cdots 37}a^{8}+\frac{39\cdots 93}{26\cdots 88}a^{6}-\frac{11\cdots 19}{33\cdots 61}a^{4}-\frac{10\cdots 27}{22\cdots 48}a^{2}+\frac{621525644649394}{12\cdots 13}$, $\frac{1}{90\cdots 92}a^{15}+\frac{32\cdots 75}{11\cdots 74}a^{13}+\frac{95\cdots 91}{45\cdots 96}a^{11}-\frac{16\cdots 49}{56\cdots 37}a^{9}+\frac{39\cdots 93}{26\cdots 88}a^{7}-\frac{11\cdots 19}{33\cdots 61}a^{5}-\frac{10\cdots 27}{22\cdots 48}a^{3}+\frac{621525644649394}{12\cdots 13}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{23692341}{281782655624}a^{14}-\frac{498828351}{70445663906}a^{12}+\frac{30922965701}{140891327812}a^{10}-\frac{112925453832}{35222831953}a^{8}+\frac{3275151267145}{140891327812}a^{6}-\frac{2870856143884}{35222831953}a^{4}+\frac{8341361814311}{70445663906}a^{2}-\frac{1215435148253}{35222831953}$, $\frac{17897419618225}{53\cdots 76}a^{14}-\frac{377921725907145}{13\cdots 44}a^{12}+\frac{23\cdots 43}{26\cdots 88}a^{10}-\frac{86\cdots 29}{66\cdots 22}a^{8}+\frac{25\cdots 81}{26\cdots 88}a^{6}-\frac{22\cdots 33}{66\cdots 22}a^{4}+\frac{69\cdots 89}{13\cdots 44}a^{2}-\frac{14\cdots 50}{74425843916689}$, $\frac{41738502630549}{53\cdots 76}a^{14}-\frac{17\cdots 45}{26\cdots 88}a^{12}+\frac{54\cdots 15}{26\cdots 88}a^{10}-\frac{39\cdots 47}{13\cdots 44}a^{8}+\frac{58\cdots 97}{26\cdots 88}a^{6}-\frac{10\cdots 01}{13\cdots 44}a^{4}+\frac{14\cdots 17}{13\cdots 44}a^{2}-\frac{54\cdots 35}{148851687833378}$, $\frac{33006715021406}{56\cdots 37}a^{14}-\frac{21\cdots 45}{45\cdots 96}a^{12}+\frac{16\cdots 27}{11\cdots 74}a^{10}-\frac{46\cdots 87}{22\cdots 48}a^{8}+\frac{46\cdots 16}{33\cdots 61}a^{6}-\frac{58\cdots 81}{13\cdots 44}a^{4}+\frac{31\cdots 76}{56\cdots 37}a^{2}-\frac{32\cdots 55}{25\cdots 26}$, $\frac{119793975730411}{45\cdots 96}a^{14}-\frac{10\cdots 07}{45\cdots 96}a^{12}+\frac{15\cdots 79}{22\cdots 48}a^{10}-\frac{23\cdots 13}{22\cdots 48}a^{8}+\frac{10\cdots 51}{13\cdots 44}a^{6}-\frac{38\cdots 39}{13\cdots 44}a^{4}+\frac{51\cdots 23}{11\cdots 74}a^{2}-\frac{36\cdots 97}{25\cdots 26}$, $\frac{130963131678681}{22\cdots 48}a^{14}-\frac{21\cdots 21}{45\cdots 96}a^{12}+\frac{16\cdots 55}{11\cdots 74}a^{10}-\frac{46\cdots 67}{22\cdots 48}a^{8}+\frac{94\cdots 31}{66\cdots 22}a^{6}-\frac{60\cdots 45}{13\cdots 44}a^{4}+\frac{34\cdots 74}{56\cdots 37}a^{2}-\frac{48\cdots 75}{25\cdots 26}$, $\frac{242449249134715}{45\cdots 96}a^{14}-\frac{10\cdots 81}{22\cdots 48}a^{12}+\frac{32\cdots 99}{22\cdots 48}a^{10}-\frac{24\cdots 83}{11\cdots 74}a^{8}+\frac{21\cdots 23}{13\cdots 44}a^{6}-\frac{39\cdots 19}{66\cdots 22}a^{4}+\frac{10\cdots 51}{11\cdots 74}a^{2}-\frac{49\cdots 54}{12\cdots 13}$, $\frac{23692341}{281782655624}a^{15}-\frac{171469595401279}{90\cdots 92}a^{14}-\frac{498828351}{70445663906}a^{13}+\frac{19\cdots 87}{11\cdots 74}a^{12}+\frac{30922965701}{140891327812}a^{11}-\frac{25\cdots 77}{45\cdots 96}a^{10}-\frac{112925453832}{35222831953}a^{9}+\frac{52\cdots 13}{56\cdots 37}a^{8}+\frac{3275151267145}{140891327812}a^{7}-\frac{20\cdots 23}{26\cdots 88}a^{6}-\frac{2870856143884}{35222831953}a^{5}+\frac{10\cdots 56}{33\cdots 61}a^{4}+\frac{8341361814311}{70445663906}a^{3}-\frac{12\cdots 67}{22\cdots 48}a^{2}-\frac{1215435148253}{35222831953}a+\frac{19\cdots 71}{12\cdots 13}$, $\frac{100399905779759}{22\cdots 48}a^{15}+\frac{7711099361389}{13\cdots 44}a^{14}-\frac{33\cdots 75}{90\cdots 92}a^{13}-\frac{635954894548485}{13\cdots 44}a^{12}+\frac{63\cdots 80}{56\cdots 37}a^{11}+\frac{47\cdots 90}{33\cdots 61}a^{10}-\frac{70\cdots 13}{45\cdots 96}a^{9}-\frac{65\cdots 39}{33\cdots 61}a^{8}+\frac{70\cdots 01}{66\cdots 22}a^{7}+\frac{85\cdots 17}{66\cdots 22}a^{6}-\frac{89\cdots 39}{26\cdots 88}a^{5}-\frac{25\cdots 31}{66\cdots 22}a^{4}+\frac{23\cdots 79}{56\cdots 37}a^{3}+\frac{15\cdots 92}{33\cdots 61}a^{2}-\frac{39\cdots 19}{50\cdots 52}a-\frac{622169599192311}{74425843916689}$, $\frac{113064699311427}{45\cdots 96}a^{15}-\frac{209564723536521}{90\cdots 92}a^{14}-\frac{91\cdots 55}{45\cdots 96}a^{13}+\frac{976222388875363}{56\cdots 37}a^{12}+\frac{13\cdots 33}{22\cdots 48}a^{11}-\frac{19\cdots 23}{45\cdots 96}a^{10}-\frac{17\cdots 45}{22\cdots 48}a^{9}+\frac{24\cdots 49}{56\cdots 37}a^{8}+\frac{64\cdots 87}{13\cdots 44}a^{7}-\frac{36\cdots 93}{26\cdots 88}a^{6}-\frac{19\cdots 83}{13\cdots 44}a^{5}-\frac{31\cdots 50}{33\cdots 61}a^{4}+\frac{23\cdots 17}{11\cdots 74}a^{3}+\frac{19\cdots 15}{22\cdots 48}a^{2}-\frac{26\cdots 61}{25\cdots 26}a-\frac{69\cdots 75}{12\cdots 13}$, $\frac{197822731513747}{90\cdots 92}a^{15}+\frac{1063856750327}{20\cdots 08}a^{14}-\frac{83\cdots 95}{45\cdots 96}a^{13}-\frac{21948490610591}{50\cdots 52}a^{12}+\frac{25\cdots 13}{45\cdots 96}a^{11}+\frac{13\cdots 57}{10\cdots 04}a^{10}-\frac{18\cdots 63}{22\cdots 48}a^{9}-\frac{45\cdots 03}{25\cdots 26}a^{8}+\frac{16\cdots 71}{26\cdots 88}a^{7}+\frac{71\cdots 51}{595406751333512}a^{6}-\frac{29\cdots 75}{13\cdots 44}a^{5}-\frac{54\cdots 57}{148851687833378}a^{4}+\frac{84\cdots 67}{22\cdots 48}a^{3}+\frac{22\cdots 87}{50\cdots 52}a^{2}-\frac{53\cdots 09}{25\cdots 26}a-\frac{90\cdots 76}{12\cdots 13}$, $\frac{802221882420075}{90\cdots 92}a^{15}-\frac{595641643339173}{90\cdots 92}a^{14}-\frac{34\cdots 83}{45\cdots 96}a^{13}+\frac{13\cdots 09}{22\cdots 48}a^{12}+\frac{10\cdots 53}{45\cdots 96}a^{11}-\frac{91\cdots 47}{45\cdots 96}a^{10}-\frac{81\cdots 59}{22\cdots 48}a^{9}+\frac{38\cdots 89}{11\cdots 74}a^{8}+\frac{72\cdots 99}{26\cdots 88}a^{7}-\frac{76\cdots 29}{26\cdots 88}a^{6}-\frac{13\cdots 43}{13\cdots 44}a^{5}+\frac{79\cdots 91}{66\cdots 22}a^{4}+\frac{36\cdots 75}{22\cdots 48}a^{3}-\frac{46\cdots 17}{22\cdots 48}a^{2}-\frac{12\cdots 77}{25\cdots 26}a+\frac{83\cdots 44}{12\cdots 13}$, $\frac{86727310918653}{90\cdots 92}a^{15}+\frac{293608478544617}{90\cdots 92}a^{14}-\frac{71\cdots 95}{90\cdots 92}a^{13}-\frac{24\cdots 55}{90\cdots 92}a^{12}+\frac{11\cdots 61}{45\cdots 96}a^{11}+\frac{38\cdots 55}{45\cdots 96}a^{10}-\frac{16\cdots 45}{45\cdots 96}a^{9}-\frac{55\cdots 41}{45\cdots 96}a^{8}+\frac{73\cdots 89}{26\cdots 88}a^{7}+\frac{22\cdots 21}{26\cdots 88}a^{6}-\frac{28\cdots 91}{26\cdots 88}a^{5}-\frac{71\cdots 47}{26\cdots 88}a^{4}+\frac{39\cdots 43}{22\cdots 48}a^{3}+\frac{80\cdots 81}{22\cdots 48}a^{2}-\frac{33\cdots 71}{50\cdots 52}a-\frac{55\cdots 91}{50\cdots 52}$, $\frac{25354105168519}{53\cdots 76}a^{15}+\frac{678964931110745}{45\cdots 96}a^{14}-\frac{10\cdots 05}{26\cdots 88}a^{13}-\frac{11\cdots 93}{90\cdots 92}a^{12}+\frac{32\cdots 51}{26\cdots 88}a^{11}+\frac{89\cdots 99}{22\cdots 48}a^{10}-\frac{22\cdots 71}{13\cdots 44}a^{9}-\frac{26\cdots 07}{45\cdots 96}a^{8}+\frac{31\cdots 71}{26\cdots 88}a^{7}+\frac{55\cdots 45}{13\cdots 44}a^{6}-\frac{52\cdots 01}{13\cdots 44}a^{5}-\frac{38\cdots 81}{26\cdots 88}a^{4}+\frac{71\cdots 61}{13\cdots 44}a^{3}+\frac{23\cdots 27}{11\cdots 74}a^{2}-\frac{25\cdots 19}{148851687833378}a-\frac{32\cdots 25}{50\cdots 52}$, $\frac{878310307820011}{45\cdots 96}a^{15}-\frac{22\cdots 97}{90\cdots 92}a^{14}-\frac{92\cdots 78}{56\cdots 37}a^{13}+\frac{95\cdots 85}{45\cdots 96}a^{12}+\frac{11\cdots 55}{22\cdots 48}a^{11}-\frac{29\cdots 71}{45\cdots 96}a^{10}-\frac{85\cdots 47}{11\cdots 74}a^{9}+\frac{21\cdots 79}{22\cdots 48}a^{8}+\frac{73\cdots 99}{13\cdots 44}a^{7}-\frac{18\cdots 85}{26\cdots 88}a^{6}-\frac{65\cdots 90}{33\cdots 61}a^{5}+\frac{32\cdots 09}{13\cdots 44}a^{4}+\frac{33\cdots 77}{11\cdots 74}a^{3}-\frac{80\cdots 37}{22\cdots 48}a^{2}-\frac{12\cdots 83}{12\cdots 13}a+\frac{28\cdots 95}{25\cdots 26}$
|
| |
| Regulator: | \( 10926714830.0 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 10926714830.0 \cdot 1}{2\cdot\sqrt{414692653834021167975731560448}}\cr\approx \mathstrut & 0.556002024302 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr \OD_{16}$ (as 16T1584):
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for $C_2\wr \OD_{16}$ |
| Character table for $C_2\wr \OD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.31a1.171 | $x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
| 2.1.8.28b1.43 | $x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 2$ | $8$ | $1$ | $28$ | $C_2^3: C_4$ | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$$ | |
|
\(449\)
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{449}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
|
\(1889\)
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1889}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $4$ | $2$ | $2$ | $2$ |