Normalized defining polynomial
\( x^{16} - 6 x^{15} - 954 x^{14} + 11888 x^{13} + 220836 x^{12} - 4207992 x^{11} - 4080691 x^{10} + 439415370 x^{9} - 2229690096 x^{8} - 5603494212 x^{7} + 61671443021 x^{6} - 61744943186 x^{5} - 302059720208 x^{4} + 381451049084 x^{3} + 246801227608 x^{2} - 422001336482 x + 105590872531 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(410614370925299326221754150224933859206386689=29^{14}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $614.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{30164} a^{14} - \frac{275}{15082} a^{13} + \frac{2523}{30164} a^{12} + \frac{59}{15082} a^{11} + \frac{3235}{30164} a^{10} - \frac{1502}{7541} a^{9} + \frac{2263}{15082} a^{8} - \frac{885}{7541} a^{7} - \frac{3703}{15082} a^{6} + \frac{673}{15082} a^{5} - \frac{2509}{30164} a^{4} - \frac{2737}{7541} a^{3} + \frac{5109}{30164} a^{2} + \frac{2394}{7541} a + \frac{12623}{30164}$, $\frac{1}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{15} + \frac{76492777086215913193421865239540116913278437620359199850437556937910058057153}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{14} + \frac{240590004573835405970564970480035916192261842069223201981150091985393892850291289}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{13} + \frac{1305407940642085129561717519395244882256618308033807062638182957752307611875408415}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{12} - \frac{7159469165984655779486960373304631231694245399984192150582393136763831276320567971}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{11} - \frac{3891248327741074185890109055039538349050496754924240248806390362804406043674496321}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{10} + \frac{2517250259080483294263732784768250715790843770199169481274184487762174127679245789}{26083421848526978843770220304719815597597635650830252264857595884698414866817790532} a^{9} - \frac{479567466950271279836317436199930402607054188883035078915071320682977216109723}{3086065055433859304752747314803574964221206300382187915861050151999339193897041} a^{8} - \frac{1317990389291228141026944811895973331731808312945514613403189875282671317894345716}{6520855462131744710942555076179953899399408912707563066214398971174603716704447633} a^{7} + \frac{1679317758834223370882482983995190509572498233964164922139406394638168960731690180}{6520855462131744710942555076179953899399408912707563066214398971174603716704447633} a^{6} + \frac{19032314137520879380336516081496848488812585498028640941666206371167430140691176389}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{5} + \frac{15423023417565577849301006869616047325730188425377508243952994743084285450689942309}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{4} - \frac{17615207688251364095155722631802274016409561015129084181539712942909607662998875017}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{3} - \frac{9254937940677367400126887680723545580041306936624131048269861145019718333728311099}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a^{2} - \frac{5444487573479175953168427438654101292500751105052350716284511915824162692778659441}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064} a - \frac{7661148038581981231244639155558290413918074157394476521717258971055874468433538333}{52166843697053957687540440609439631195195271301660504529715191769396829733635581064}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26023114028100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{1537}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{29}) \), 4.4.3630961153.1, 4.4.3630961153.2, \(\Q(\sqrt{29}, \sqrt{53})\), 8.8.13183878894595089409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.1 | $x^{8} - 29$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |