Normalized defining polynomial
\( x^{16} - 97 x^{14} - 126 x^{13} + 3396 x^{12} + 8716 x^{11} - 45478 x^{10} - 190092 x^{9} + 62158 x^{8} + 1261949 x^{7} + 1827770 x^{6} - 537602 x^{5} - 3462683 x^{4} - 2820970 x^{3} - 267121 x^{2} + 597619 x + 201601 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(400734980167009195224860426161=13^{8}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{8701} a^{14} - \frac{24}{791} a^{13} + \frac{3956}{8701} a^{12} - \frac{544}{8701} a^{11} + \frac{461}{8701} a^{10} - \frac{388}{1243} a^{9} - \frac{3991}{8701} a^{8} + \frac{186}{1243} a^{7} - \frac{2820}{8701} a^{6} - \frac{2008}{8701} a^{5} - \frac{619}{1243} a^{4} - \frac{3065}{8701} a^{3} - \frac{1803}{8701} a^{2} - \frac{40}{113} a - \frac{80}{8701}$, $\frac{1}{8229086706986454309228952945529} a^{15} + \frac{83737967294738260249226}{2618226760097503757311152703} a^{14} + \frac{520712379044100021261581267110}{8229086706986454309228952945529} a^{13} - \frac{385868593594197014996141420477}{1175583815283779187032707563647} a^{12} + \frac{2595069165677232630171809246232}{8229086706986454309228952945529} a^{11} + \frac{215524071850001113441535149684}{8229086706986454309228952945529} a^{10} + \frac{59691670884594059005946198841}{748098791544223119020813904139} a^{9} + \frac{62184896745733011573816844040}{748098791544223119020813904139} a^{8} + \frac{3515471572065574542418031448}{72823776168021719550698698633} a^{7} + \frac{1481952732044940038466438529764}{8229086706986454309228952945529} a^{6} - \frac{1220734389097988576331089112321}{8229086706986454309228952945529} a^{5} - \frac{2558306423203135012155603453464}{8229086706986454309228952945529} a^{4} - \frac{3606000211602793639572769203665}{8229086706986454309228952945529} a^{3} - \frac{2604936841331342177929781353932}{8229086706986454309228952945529} a^{2} + \frac{3522508651097804824802476554190}{8229086706986454309228952945529} a + \frac{892617049687828442509380274}{18327587320682526301178068921}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3296211055.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{689}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{53})\), 4.4.36517.1 x2, 4.4.8957.1 x2, 8.8.225360027841.1, 8.8.48695101400413.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |