Normalized defining polynomial
\( x^{16} - 48 x^{14} + 936 x^{12} - 9504 x^{10} + 53460 x^{8} - 163296 x^{6} + 244944 x^{4} - 139968 x^{2} + 13122 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3965881151245791007623610368=2^{79}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(192=2^{6}\cdot 3\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{192}(1,·)$, $\chi_{192}(131,·)$, $\chi_{192}(73,·)$, $\chi_{192}(11,·)$, $\chi_{192}(145,·)$, $\chi_{192}(83,·)$, $\chi_{192}(25,·)$, $\chi_{192}(155,·)$, $\chi_{192}(97,·)$, $\chi_{192}(35,·)$, $\chi_{192}(169,·)$, $\chi_{192}(107,·)$, $\chi_{192}(49,·)$, $\chi_{192}(179,·)$, $\chi_{192}(121,·)$, $\chi_{192}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 790401143.5134428 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||