Normalized defining polynomial
\( x^{16} - x^{15} - 85 x^{14} - 32 x^{13} + 2368 x^{12} + 3444 x^{11} - 23624 x^{10} - 51610 x^{9} + 68499 x^{8} + 210109 x^{7} - 39947 x^{6} - 325110 x^{5} - 71148 x^{4} + 189696 x^{3} + 70720 x^{2} - 33280 x - 13312 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3922880935919264967742950184849=13^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{7}{16} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} + \frac{3}{32} a^{6} + \frac{7}{32} a^{5} + \frac{5}{32} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{8} - \frac{5}{64} a^{7} - \frac{3}{32} a^{6} - \frac{3}{32} a^{5} - \frac{5}{64} a^{4} + \frac{13}{32} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{12} - \frac{1}{128} a^{11} - \frac{1}{128} a^{9} - \frac{1}{32} a^{8} - \frac{1}{128} a^{7} + \frac{1}{128} a^{5} + \frac{31}{128} a^{4} - \frac{7}{64} a^{3} - \frac{7}{32} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{256} a^{13} - \frac{1}{256} a^{12} + \frac{3}{256} a^{10} - \frac{1}{32} a^{9} + \frac{3}{256} a^{8} - \frac{1}{32} a^{7} - \frac{11}{256} a^{6} - \frac{45}{256} a^{5} - \frac{13}{128} a^{4} + \frac{23}{64} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{14} - \frac{1}{512} a^{12} + \frac{3}{512} a^{11} - \frac{5}{512} a^{10} - \frac{5}{512} a^{9} - \frac{5}{512} a^{8} - \frac{19}{512} a^{7} - \frac{7}{64} a^{6} + \frac{57}{512} a^{5} - \frac{31}{256} a^{4} + \frac{55}{128} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{7948569438620280889856} a^{15} + \frac{4835454400161078209}{7948569438620280889856} a^{14} - \frac{4102594148452693347}{7948569438620280889856} a^{13} + \frac{1917916643420349595}{993571179827535111232} a^{12} - \frac{4301316489594789071}{3974284719310140444928} a^{11} + \frac{7354489722941682533}{496785589913767555616} a^{10} + \frac{29935251391987295209}{3974284719310140444928} a^{9} - \frac{105935060352843911715}{3974284719310140444928} a^{8} + \frac{476553088904594888601}{7948569438620280889856} a^{7} + \frac{797906520685737714567}{7948569438620280889856} a^{6} + \frac{1502569749323400755897}{7948569438620280889856} a^{5} + \frac{880197411387970907507}{3974284719310140444928} a^{4} + \frac{914530996566014002423}{1987142359655070222464} a^{3} + \frac{245702544008896254955}{496785589913767555616} a^{2} - \frac{31400952865671310259}{124196397478441888904} a - \frac{5589091152317377838}{15524549684805236113}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56949968052.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{221}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{17})\), 4.4.830297.1, 4.4.4913.1, 8.8.689393108209.1, 8.8.1980626399884457.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |