Normalized defining polynomial
\( x^{16} - 5 x^{15} - 3216 x^{14} - 16435 x^{13} + 3533194 x^{12} + 46612678 x^{11} - 1379884912 x^{10} - 28799442787 x^{9} + 94978012812 x^{8} + 5365653798128 x^{7} + 26357066282862 x^{6} - 153750994966120 x^{5} - 1057291387991512 x^{4} + 1776491162706154 x^{3} + 10306247757699384 x^{2} - 5002354276372688 x - 25609000866480631 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3668342962637889127310596327197122046055622675946369169=53^{14}\cdot 149^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2572.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{15} + \frac{824328722483575322861716747166241607183379127503077367099064500406215756433138328546478298508978740825145618055705258}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{14} - \frac{392615572325462765577319902502226723730927223237625854171787034275985906296388340381674924923031978134125712779930532}{923924034257157101109646096366213899174831301263565194820262314174950212905670042940807818556695124537505349655010763} a^{13} + \frac{1457406455528521690497558435187144059138766341272266397166606095129837024340534905198965896957530117260189551871730558}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{12} + \frac{1619973941866461556463307013294556015112654500514703113946717206210827422544086008151302107833081658109632026078805483}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{11} + \frac{892446052918262637516665634799298114767165883988940253829138184249779013696178083204381459230783447124694186367167990}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{10} + \frac{2188641019179195578134602486369821127402696664601183407263697431741443649887597611021426085880520584929918590477805923}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{9} - \frac{2058821962061926349180092170621966332262829943423667615492379233797323011715443901000215729923759287923051669284496726}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{8} + \frac{1375338194390439722655535033876234469721479869441942150262927015699625568164876952194358524446771243693685234026862504}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{7} + \frac{134913955125007503620536068181204825858688396193541559099079721722866452605992153600986964221004568597126774049523199}{380439308223535276927501333797852782013165829932056256690696247013214793549393547093273807640992110103678673387357373} a^{6} - \frac{371569630133052156627963613210316011762338547087150694552850831344971229746032275757727102520878001858356753819500758}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{5} - \frac{2001400185506118480825733557082283437289530694094715466760442846532504369996927176353874547911858551582393639167627660}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{4} + \frac{1858036568206824766356174903232394172576117457041557092283352717137763212613378762787421698320105096547350971288019146}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{3} - \frac{2374203587826538940828666977791551059921592432894432831631928275771796024289676674854256415590666348932539340497255604}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341} a^{2} + \frac{28174665639393146607833840778494781336862616185149783102266199139293264347214707956510088066460527899139378876031774}{57234232210620351396172767031535374285166540786238551891520674329421694604776020359165086105281998865155198651195357} a + \frac{454747187730606279896538008327694570051580109759163842435838715229881782778967990070790393169041127146437997424356981}{6467468239800099707767522674563497294223819108844956363741836199224651490339690300585654729896865871762537447585075341}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8573309611210000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{7897}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{149}) \), \(\Q(\sqrt{53}, \sqrt{149})\), 8.8.242534110929108256632529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $149$ | 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |