Normalized defining polynomial
\( x^{16} - 4 x^{15} - 824 x^{14} + 1004 x^{13} + 258716 x^{12} + 362012 x^{11} - 37641976 x^{10} - 137669268 x^{9} + 2442903326 x^{8} + 13272467508 x^{7} - 54499332552 x^{6} - 367215551292 x^{5} + 544143437772 x^{4} + 3910405446324 x^{3} - 3349786075272 x^{2} - 13332861193500 x + 9414762766137 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36387146957833308423870594234187776000000=2^{40}\cdot 3^{6}\cdot 5^{6}\cdot 13^{8}\cdot 1249^{2}\cdot 1511^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $342.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 1249, 1511$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} + \frac{1}{8} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{4} - \frac{1}{8} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{16} a + \frac{3}{16}$, $\frac{1}{48} a^{12} - \frac{1}{48} a^{11} + \frac{1}{48} a^{10} - \frac{1}{48} a^{9} + \frac{1}{24} a^{8} + \frac{1}{24} a^{7} + \frac{1}{24} a^{6} - \frac{1}{8} a^{5} + \frac{5}{48} a^{4} - \frac{3}{16} a^{3} + \frac{7}{16} a^{2} + \frac{5}{16} a$, $\frac{1}{1104} a^{13} + \frac{11}{1104} a^{12} + \frac{5}{552} a^{11} - \frac{1}{276} a^{10} - \frac{13}{1104} a^{9} + \frac{41}{1104} a^{8} - \frac{11}{138} a^{7} - \frac{5}{46} a^{6} + \frac{131}{1104} a^{5} - \frac{73}{368} a^{4} - \frac{7}{184} a^{3} + \frac{35}{92} a^{2} - \frac{101}{368} a + \frac{21}{368}$, $\frac{1}{2208} a^{14} - \frac{19}{2208} a^{12} - \frac{17}{552} a^{11} - \frac{5}{736} a^{10} + \frac{1}{24} a^{9} - \frac{79}{2208} a^{8} - \frac{3}{92} a^{7} - \frac{7}{736} a^{6} - \frac{35}{276} a^{5} + \frac{343}{2208} a^{4} - \frac{7}{184} a^{3} - \frac{31}{736} a^{2} + \frac{53}{184} a - \frac{231}{736}$, $\frac{1}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{15} - \frac{7801261266001442200238034370268798509469519840092912027227714599106217}{56846711578179569932500142878287845338124924986047396119243892390613981664} a^{14} - \frac{31925909543462524402957638136218972899139307196501095696641757195056035}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{13} - \frac{925650340274357156696058574837183629370112438954025616151756861232692725}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{12} - \frac{4661261052067093457520301162946030911809311356594789521203281197205286119}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{11} - \frac{2384441648929247379995306446376003772826801363970988184260382881428469381}{56846711578179569932500142878287845338124924986047396119243892390613981664} a^{10} - \frac{64830142442857750078427425551558896012845680299028937734672777435305047}{2471596155573024779673919255577732406005431521132495483445386625678868768} a^{9} - \frac{1401247566863112601828206924186763208266567969676780047377786124666565189}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{8} + \frac{3902666319968069208155364766983992868172899918566679264763611569014541275}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{7} - \frac{222595511175636929236263461003926396701812627366331140848315031130993625}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{6} + \frac{41144559155933743988480239671242992612761573006019367891884608546130775663}{170540134734538709797500428634863536014374774958142188357731677171841944992} a^{5} - \frac{7057867514974744127338158965892760100954784405394127386372976000338007797}{56846711578179569932500142878287845338124924986047396119243892390613981664} a^{4} - \frac{7787000786386601321755033339895801452304986407023793135723391214570803831}{56846711578179569932500142878287845338124924986047396119243892390613981664} a^{3} + \frac{26089641634945662231383128802667424257991770731009399003187530511573563377}{56846711578179569932500142878287845338124924986047396119243892390613981664} a^{2} + \frac{16814383931825062663210161249133901697519906937944868329895644431307734781}{56846711578179569932500142878287845338124924986047396119243892390613981664} a - \frac{25697548932286380074102458064727974216327125943071348859157321255132302653}{56846711578179569932500142878287845338124924986047396119243892390613981664}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 743643457753000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 133 conjugacy class representatives for t16n1547 are not computed |
| Character table for t16n1547 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}, \sqrt{13})\), 8.8.421149081600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13 | Data not computed | ||||||
| 1249 | Data not computed | ||||||
| 1511 | Data not computed | ||||||