Normalized defining polynomial
\( x^{16} - 60 x^{14} - 4 x^{13} + 1421 x^{12} + 256 x^{11} - 16978 x^{10} - 5040 x^{9} + 107128 x^{8} + 40592 x^{7} - 337526 x^{6} - 131408 x^{5} + 448317 x^{4} + 146816 x^{3} - 161348 x^{2} - 66092 x - 1471 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36031176726534051919298560000=2^{32}\cdot 5^{4}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{34} a^{13} - \frac{4}{17} a^{12} - \frac{1}{17} a^{11} + \frac{3}{34} a^{10} - \frac{5}{34} a^{9} + \frac{1}{34} a^{8} + \frac{9}{34} a^{7} + \frac{6}{17} a^{6} + \frac{4}{17} a^{5} - \frac{7}{34} a^{4} + \frac{13}{34} a^{3} + \frac{11}{34} a^{2} - \frac{6}{17} a - \frac{5}{17}$, $\frac{1}{68} a^{14} - \frac{1}{68} a^{13} + \frac{5}{34} a^{12} - \frac{11}{68} a^{11} + \frac{4}{17} a^{10} - \frac{1}{4} a^{9} - \frac{1}{68} a^{8} + \frac{6}{17} a^{7} + \frac{7}{68} a^{6} + \frac{15}{68} a^{5} - \frac{1}{34} a^{4} - \frac{1}{4} a^{3} - \frac{5}{17} a^{2} - \frac{9}{68} a - \frac{19}{68}$, $\frac{1}{29111674794356389867516} a^{15} + \frac{114801349513463095663}{29111674794356389867516} a^{14} + \frac{14789494738369739634}{7277918698589097466879} a^{13} + \frac{2412484698744464858157}{29111674794356389867516} a^{12} + \frac{169991795848410927003}{14555837397178194933758} a^{11} - \frac{2676469024488991125977}{29111674794356389867516} a^{10} + \frac{1382948726136368532017}{29111674794356389867516} a^{9} - \frac{13021318310959323680}{68017931762514929597} a^{8} - \frac{194264796352501281361}{29111674794356389867516} a^{7} - \frac{13185516841348559495129}{29111674794356389867516} a^{6} + \frac{192535349010056118751}{428112864622888086287} a^{5} + \frac{14274490438642096751803}{29111674794356389867516} a^{4} + \frac{1241463407742742231}{141318809681341698386} a^{3} + \frac{13450126688229141231}{1712451458491552345148} a^{2} + \frac{8931584938309672624079}{29111674794356389867516} a + \frac{2958430870677535315491}{7277918698589097466879}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 839195284.563 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2^2$ (as 16T106):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $OD_{16}:C_2^2$ |
| Character table for $OD_{16}:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{82}) \), 4.4.13448.1 x2, 4.4.2624.1 x2, \(\Q(\sqrt{2}, \sqrt{41})\), 8.8.11574317056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 41.8.6.2 | $x^{8} + 943 x^{4} + 242064$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |