Normalized defining polynomial
\( x^{16} - 57 x^{14} - 26 x^{13} + 1311 x^{12} + 1074 x^{11} - 15461 x^{10} - 16935 x^{9} + 98370 x^{8} + 126777 x^{7} - 324977 x^{6} - 449307 x^{5} + 497217 x^{4} + 638886 x^{3} - 336979 x^{2} - 267154 x + 81089 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35789621892199165414211328125=5^{8}\cdot 13^{6}\cdot 29^{7}\cdot 1049^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2945} a^{14} - \frac{994}{2945} a^{13} - \frac{241}{589} a^{12} + \frac{175}{589} a^{11} - \frac{1079}{2945} a^{10} + \frac{224}{589} a^{9} - \frac{223}{589} a^{8} + \frac{7}{19} a^{7} - \frac{12}{589} a^{6} + \frac{262}{2945} a^{5} + \frac{221}{589} a^{4} + \frac{215}{589} a^{3} + \frac{207}{2945} a^{2} - \frac{822}{2945} a - \frac{1074}{2945}$, $\frac{1}{71702413681390329456275} a^{15} + \frac{10500302233787424268}{71702413681390329456275} a^{14} + \frac{7144918541971976508657}{71702413681390329456275} a^{13} - \frac{5627248801359541883432}{14340482736278065891255} a^{12} - \frac{24338056637301187284169}{71702413681390329456275} a^{11} - \frac{29716823529449330960918}{71702413681390329456275} a^{10} + \frac{749971669045583481551}{14340482736278065891255} a^{9} - \frac{6124953682180000081809}{14340482736278065891255} a^{8} - \frac{6115781242272210016708}{14340482736278065891255} a^{7} + \frac{11068695733827778294557}{71702413681390329456275} a^{6} + \frac{4664098511987296079024}{71702413681390329456275} a^{5} + \frac{2706780518954314256876}{14340482736278065891255} a^{4} - \frac{2207755585353778875593}{71702413681390329456275} a^{3} + \frac{30834517041998326990662}{71702413681390329456275} a^{2} + \frac{286938219256329116193}{3773811246388964708225} a - \frac{20938107755434689609153}{71702413681390329456275}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1710284974.96 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.2576088125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.8.6.3 | $x^{8} + 65 x^{4} + 1352$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 1049 | Data not computed | ||||||