Normalized defining polynomial
\( x^{16} - x^{15} - 417 x^{14} + 1025 x^{13} + 63344 x^{12} - 209215 x^{11} - 4564647 x^{10} + 17645096 x^{9} + 164307949 x^{8} - 710547742 x^{7} - 2725760041 x^{6} + 13536478427 x^{5} + 12517302234 x^{4} - 98492861490 x^{3} + 80748956016 x^{2} + 23338091769 x - 4383666169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35079212407887857597919870221838606532086673=13^{14}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $526.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} + \frac{3}{19} a^{12} + \frac{3}{19} a^{11} + \frac{7}{19} a^{10} - \frac{2}{19} a^{9} - \frac{6}{19} a^{8} - \frac{4}{19} a^{7} - \frac{3}{19} a^{6} + \frac{1}{19} a^{5} - \frac{5}{19} a^{4} - \frac{9}{19} a^{3} + \frac{2}{19} a^{2} + \frac{1}{19} a - \frac{8}{19}$, $\frac{1}{1843} a^{14} + \frac{32}{1843} a^{13} - \frac{385}{1843} a^{12} + \frac{75}{1843} a^{11} + \frac{182}{1843} a^{10} - \frac{843}{1843} a^{9} + \frac{259}{1843} a^{8} - \frac{328}{1843} a^{7} - \frac{523}{1843} a^{6} - \frac{755}{1843} a^{5} - \frac{648}{1843} a^{4} - \frac{791}{1843} a^{3} + \frac{249}{1843} a^{2} + \frac{914}{1843} a - \frac{251}{1843}$, $\frac{1}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{15} - \frac{2256734403702128011876052642986659931886680452247217678076417727432}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{14} - \frac{75411261339282247728421571758337066270133539690526582205696064252875}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{13} + \frac{7050925904439932944313271353016041914977279223713235865004141049425090}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{12} + \frac{1387716668998562261296528246502760799984055593820094058167687600390664}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{11} - \frac{285805674203463574354349146062341738584114918238331394239478891667937}{799663985800684946714986270604477041780082023380683386675427067508393} a^{10} - \frac{925143231519738512921854392567486073755398651323773416097018095316139}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{9} + \frac{1230300983754012705052026436699642876259832337989307727760295676338750}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{8} + \frac{3945941833591044406292972993611089116350403785829894170770291607625423}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{7} - \frac{3808358008447854081514058009056653859514559332645141774266164067026877}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{6} - \frac{4517215043997574123761322613822850161572860846368837678223531775882231}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{5} - \frac{4693132384868353498396459590748130040285545218536106176227581381718171}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{4} - \frac{2719252626451265385943137273551508263916162379173587320656751856153271}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{3} + \frac{6170425172310820516699011323675654674939065395732923668615416973821516}{15193615730213013987584739141485063793821558444232984346833114282659467} a^{2} - \frac{7254214174155475399071242754927601769045243474893517539594380783901267}{15193615730213013987584739141485063793821558444232984346833114282659467} a + \frac{6041851910796394993695167036538832049607043154948235275747728843150165}{15193615730213013987584739141485063793821558444232984346833114282659467}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17231511043300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.65743873.1, 8.8.53323682598564071473.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | R | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 73 | Data not computed | ||||||