Normalized defining polynomial
\( x^{16} - 8 x^{15} + 140 x^{13} - 226 x^{12} - 828 x^{11} + 2053 x^{10} + 1615 x^{9} - 6829 x^{8} + 1082 x^{7} + 8373 x^{6} - 5189 x^{5} - 1826 x^{4} + 1824 x^{3} - 151 x^{2} - 31 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3488168408344511962890625=5^{12}\cdot 13^{4}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{12} a^{5} + \frac{5}{12} a^{4} - \frac{5}{12} a^{3} - \frac{1}{4} a + \frac{5}{12}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{6} a^{9} + \frac{1}{4} a^{6} + \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{29544} a^{14} - \frac{7}{29544} a^{13} - \frac{379}{14772} a^{12} - \frac{95}{9848} a^{11} - \frac{2437}{29544} a^{10} - \frac{481}{14772} a^{9} - \frac{75}{4924} a^{8} + \frac{4857}{9848} a^{7} + \frac{253}{7386} a^{6} + \frac{10249}{29544} a^{5} - \frac{3857}{14772} a^{4} - \frac{6845}{14772} a^{3} - \frac{4001}{14772} a^{2} + \frac{887}{7386} a + \frac{695}{29544}$, $\frac{1}{30991656} a^{15} + \frac{517}{30991656} a^{14} + \frac{94213}{2582638} a^{13} + \frac{423099}{10330552} a^{12} - \frac{336427}{30991656} a^{11} - \frac{63418}{3873957} a^{10} - \frac{2344969}{15495828} a^{9} - \frac{3584321}{30991656} a^{8} - \frac{929891}{2582638} a^{7} - \frac{13451009}{30991656} a^{6} + \frac{4291529}{15495828} a^{5} + \frac{4082771}{15495828} a^{4} + \frac{1797283}{7747914} a^{3} - \frac{1142641}{5165276} a^{2} + \frac{8842079}{30991656} a + \frac{887453}{15495828}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10711296.8434 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4):C_2$ (as 16T54):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $(C_2^2\times C_4):C_2$ |
| Character table for $(C_2^2\times C_4):C_2$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1, 8.8.1867663890625.1, 8.8.1867663890625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |