Normalized defining polynomial
\( x^{16} - 4 x^{15} - 96 x^{14} + 280 x^{13} + 3166 x^{12} - 8072 x^{11} - 45496 x^{10} + 115204 x^{9} + 281019 x^{8} - 778400 x^{7} - 563604 x^{6} + 2047852 x^{5} + 251748 x^{4} - 2123820 x^{3} + 106928 x^{2} + 664268 x + 79889 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3480707415024772072868946116608=2^{40}\cdot 41^{4}\cdot 73^{3}\cdot 1697^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 73, 1697$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{61139163334850635368599635383515364426581} a^{15} - \frac{6399649634701558132011654167374709463227}{61139163334850635368599635383515364426581} a^{14} + \frac{7444992178806746002476908001714219828728}{61139163334850635368599635383515364426581} a^{13} - \frac{8319907297322749478286320152891845902910}{61139163334850635368599635383515364426581} a^{12} - \frac{23099692249525280980128324352795275822205}{61139163334850635368599635383515364426581} a^{11} + \frac{19386832457977686446613159273329270193593}{61139163334850635368599635383515364426581} a^{10} + \frac{28823023336988053319868340473700791353742}{61139163334850635368599635383515364426581} a^{9} + \frac{26411721809535106266960707154109638255504}{61139163334850635368599635383515364426581} a^{8} + \frac{26013591433936604423257195018654281664238}{61139163334850635368599635383515364426581} a^{7} - \frac{23553826727218614037612216057979170649601}{61139163334850635368599635383515364426581} a^{6} + \frac{5517189684348261296060962272728307529084}{61139163334850635368599635383515364426581} a^{5} + \frac{9828851319573905728144188909893397225842}{61139163334850635368599635383515364426581} a^{4} + \frac{10417124174802687491728918545477264741951}{61139163334850635368599635383515364426581} a^{3} + \frac{15199087292560734598906394861884557288804}{61139163334850635368599635383515364426581} a^{2} - \frac{2926990680013551640725864404084720765235}{61139163334850635368599635383515364426581} a + \frac{16879337390407939186069548810981154301066}{61139163334850635368599635383515364426581}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18054188218.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 148 conjugacy class representatives for t16n1781 are not computed |
| Character table for t16n1781 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.8042119168.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.3.3 | $x^{4} + 365$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1697 | Data not computed | ||||||