Normalized defining polynomial
\( x^{16} - 34 x^{14} + 466 x^{12} - 3337 x^{10} + 13402 x^{8} - 29739 x^{6} + 32689 x^{4} - 12901 x^{2} + 873 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3460664347361374432676036608=2^{14}\cdot 17^{4}\cdot 97^{5}\cdot 131^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 97, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{80563619} a^{14} - \frac{18303837}{80563619} a^{12} - \frac{25290348}{80563619} a^{10} + \frac{15941435}{80563619} a^{8} - \frac{25670467}{80563619} a^{6} + \frac{3943512}{80563619} a^{4} + \frac{29954079}{80563619} a^{2} - \frac{27188551}{80563619}$, $\frac{1}{483381714} a^{15} - \frac{1}{161127238} a^{14} - \frac{179431075}{483381714} a^{13} + \frac{18303837}{161127238} a^{12} - \frac{105853967}{483381714} a^{11} - \frac{55273271}{161127238} a^{10} - \frac{112874711}{241690857} a^{9} + \frac{32311092}{80563619} a^{8} + \frac{27446576}{241690857} a^{7} - \frac{27446576}{80563619} a^{6} - \frac{79249115}{161127238} a^{5} + \frac{76620107}{161127238} a^{4} - \frac{25304770}{241690857} a^{3} + \frac{25304770}{80563619} a^{2} - \frac{27188551}{483381714} a + \frac{27188551}{161127238}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1268599089.84 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 106 conjugacy class representatives for t16n1944 are not computed |
| Character table for t16n1944 is not computed |
Intermediate fields
| 8.8.46664208361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.14.14.16 | $x^{14} - 2 x^{13} - 3 x^{12} - 2 x^{10} + 4 x^{9} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| $17$ | 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.6.5.4 | $x^{6} + 485$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 97.10.0.1 | $x^{10} - 2 x + 57$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 131 | Data not computed | ||||||