Normalized defining polynomial
\( x^{16} - 788 x^{14} + 215956 x^{12} - 25038032 x^{10} + 1204861360 x^{8} - 25675961248 x^{6} + 231712491168 x^{4} - 651038123904 x^{2} + 157456588864 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3373848744484085385907843975364516141319847936=2^{56}\cdot 193^{2}\cdot 257^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $700.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{8} a^{9}$, $\frac{1}{144} a^{10} - \frac{1}{18} a^{8} + \frac{1}{36} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{2}{9}$, $\frac{1}{144} a^{11} - \frac{1}{18} a^{9} + \frac{1}{36} a^{7} + \frac{1}{6} a^{5} - \frac{2}{9} a$, $\frac{1}{666144} a^{12} + \frac{317}{166536} a^{10} + \frac{1097}{41634} a^{8} + \frac{253}{41634} a^{6} + \frac{3175}{27756} a^{4} + \frac{16}{81} a^{2} + \frac{31}{81}$, $\frac{1}{666144} a^{13} + \frac{317}{166536} a^{11} + \frac{1097}{41634} a^{9} + \frac{253}{41634} a^{7} + \frac{3175}{27756} a^{5} + \frac{16}{81} a^{3} + \frac{31}{81} a$, $\frac{1}{103982832080751572124971871698095968} a^{14} + \frac{9053182465880538704899058419}{17330472013458595354161978616349328} a^{12} - \frac{3233130602831413957374688297235}{3058318590610340356616819755826352} a^{10} + \frac{247444574830618511195594990554171}{8665236006729297677080989308174664} a^{8} - \frac{954634657001843520232360731155467}{12997854010093946515621483962261996} a^{6} + \frac{20324553345458197127586350072483}{249958730963345125300413153120423} a^{4} + \frac{7341109210968234940103077315123}{25287653716136082715216894868214} a^{2} - \frac{14293644722283091440791875466}{65512056259419903407297655099}$, $\frac{1}{207965664161503144249943743396191936} a^{15} + \frac{9053182465880538704899058419}{34660944026917190708323957232698656} a^{13} + \frac{562662279471053981500621666889}{191144911913146272288551234739147} a^{11} + \frac{53074817206120678117610925226366}{1083154500841162209635123663521833} a^{9} + \frac{2655880345802030511884718147250643}{25995708020187893031242967924523992} a^{7} + \frac{123968683678698102688643751185107}{999834923853380501201652612481692} a^{5} - \frac{1325679411774951604376342529746}{12643826858068041357608447434107} a^{3} - \frac{14425939723299312765651232744}{65512056259419903407297655099} a$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118207782376000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 56 conjugacy class representatives for t16n1435 are not computed |
| Character table for t16n1435 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{514}) \), \(\Q(\sqrt{257}) \), \(\Q(\sqrt{2}, \sqrt{257})\), 8.8.2287190881599488.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.12 | $x^{8} + 8 x^{6} + 12 x^{4} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[3, 4, 5]^{2}$ |
| 2.8.25.2 | $x^{8} + 10 x^{4} + 20 x^{2} + 2$ | $8$ | $1$ | $25$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ | |
| 193 | Data not computed | ||||||
| 257 | Data not computed | ||||||