Normalized defining polynomial
\( x^{16} - 808 x^{14} + 199222 x^{12} - 18900004 x^{10} + 768110204 x^{8} - 13117641856 x^{6} + 74304624364 x^{4} - 127780508968 x^{2} + 9841036804 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3373848744484085385907843975364516141319847936=2^{56}\cdot 193^{2}\cdot 257^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $700.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{1028} a^{12} + \frac{55}{257} a^{10} - \frac{105}{514} a^{8} - \frac{56}{257} a^{6} + \frac{213}{514} a^{4}$, $\frac{1}{1028} a^{13} + \frac{55}{257} a^{11} - \frac{105}{514} a^{9} - \frac{56}{257} a^{7} + \frac{213}{514} a^{5}$, $\frac{1}{26324077903014818106390606696360044407484} a^{14} - \frac{8996004527394458459432679141449266469}{26324077903014818106390606696360044407484} a^{12} - \frac{518935282292611923307244209055458060357}{6581019475753704526597651674090011101871} a^{10} - \frac{628750328827865416235030902751489807401}{13162038951507409053195303348180022203742} a^{8} - \frac{4980313714749264103315951344127908097177}{13162038951507409053195303348180022203742} a^{6} + \frac{3324203602543441033826271321803441589987}{13162038951507409053195303348180022203742} a^{4} + \frac{9560733775107600813374958076521460297}{25607079672193402827228216630700432303} a^{2} + \frac{21237646203078572504230530493568081}{132679169285976180451959671661660271}$, $\frac{1}{26324077903014818106390606696360044407484} a^{15} - \frac{8996004527394458459432679141449266469}{26324077903014818106390606696360044407484} a^{13} - \frac{518935282292611923307244209055458060357}{6581019475753704526597651674090011101871} a^{11} - \frac{628750328827865416235030902751489807401}{13162038951507409053195303348180022203742} a^{9} - \frac{4980313714749264103315951344127908097177}{13162038951507409053195303348180022203742} a^{7} + \frac{3324203602543441033826271321803441589987}{13162038951507409053195303348180022203742} a^{5} + \frac{9560733775107600813374958076521460297}{25607079672193402827228216630700432303} a^{3} + \frac{21237646203078572504230530493568081}{132679169285976180451959671661660271} a$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71568111279500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 56 conjugacy class representatives for t16n1435 are not computed |
| Character table for t16n1435 is not computed |
Intermediate fields
| \(\Q(\sqrt{514}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{257}) \), \(\Q(\sqrt{2}, \sqrt{257})\), 8.8.2287190881599488.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.25.2 | $x^{8} + 10 x^{4} + 20 x^{2} + 2$ | $8$ | $1$ | $25$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ |
| 2.8.31.12 | $x^{8} + 8 x^{6} + 12 x^{4} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[3, 4, 5]^{2}$ | |
| 193 | Data not computed | ||||||
| 257 | Data not computed | ||||||