Normalized defining polynomial
\( x^{16} - x^{15} - 186 x^{14} + 186 x^{13} + 14213 x^{12} - 14213 x^{11} - 574089 x^{10} + 574089 x^{9} + 13115246 x^{8} - 13115246 x^{7} - 167583976 x^{6} + 167583976 x^{5} + 1097310578 x^{4} - 1097310578 x^{3} - 2878072306 x^{2} + 2878072306 x + 766028671 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33456573905268530473918973952593=17^{15}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(731=17\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{731}(1,·)$, $\chi_{731}(386,·)$, $\chi_{731}(515,·)$, $\chi_{731}(87,·)$, $\chi_{731}(259,·)$, $\chi_{731}(302,·)$, $\chi_{731}(214,·)$, $\chi_{731}(343,·)$, $\chi_{731}(601,·)$, $\chi_{731}(474,·)$, $\chi_{731}(603,·)$, $\chi_{731}(300,·)$, $\chi_{731}(558,·)$, $\chi_{731}(687,·)$, $\chi_{731}(560,·)$, $\chi_{731}(689,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{182679551} a^{9} - \frac{65395694}{182679551} a^{8} - \frac{99}{182679551} a^{7} - \frac{90924560}{182679551} a^{6} + \frac{3267}{182679551} a^{5} - \frac{57088314}{182679551} a^{4} - \frac{39930}{182679551} a^{3} - \frac{82197400}{182679551} a^{2} + \frac{131769}{182679551} a - \frac{69658126}{182679551}$, $\frac{1}{182679551} a^{10} - \frac{110}{182679551} a^{8} + \frac{11365570}{182679551} a^{7} + \frac{4235}{182679551} a^{6} + \frac{38248865}{182679551} a^{5} - \frac{66550}{182679551} a^{4} + \frac{71922725}{182679551} a^{3} + \frac{366025}{182679551} a^{2} + \frac{61123890}{182679551} a - \frac{322102}{182679551}$, $\frac{1}{182679551} a^{11} - \frac{57658281}{182679551} a^{8} - \frac{6655}{182679551} a^{7} + \frac{83922570}{182679551} a^{6} + \frac{292820}{182679551} a^{5} + \frac{3312919}{182679551} a^{4} - \frac{4026275}{182679551} a^{3} - \frac{29292111}{182679551} a^{2} + \frac{14172488}{182679551} a + \frac{10147282}{182679551}$, $\frac{1}{182679551} a^{12} - \frac{7986}{182679551} a^{8} + \frac{38818832}{182679551} a^{7} + \frac{409948}{182679551} a^{6} + \frac{30299865}{182679551} a^{5} - \frac{7247295}{182679551} a^{4} - \frac{14071188}{182679551} a^{3} + \frac{42517464}{182679551} a^{2} - \frac{58349719}{182679551} a - \frac{38974342}{182679551}$, $\frac{1}{182679551} a^{13} + \frac{69642857}{182679551} a^{8} - \frac{380666}{182679551} a^{7} + \frac{57978930}{182679551} a^{6} + \frac{18842967}{182679551} a^{5} + \frac{46812504}{182679551} a^{4} + \frac{88995586}{182679551} a^{3} + \frac{63520175}{182679551} a^{2} - \frac{82744414}{182679551} a - \frac{30561441}{182679551}$, $\frac{1}{182679551} a^{14} - \frac{484484}{182679551} a^{8} + \frac{10798835}{182679551} a^{7} + \frac{27978951}{182679551} a^{6} - \frac{40360320}{182679551} a^{5} + \frac{20435577}{182679551} a^{4} - \frac{28004688}{182679551} a^{3} - \frac{63990898}{182679551} a^{2} - \frac{75620540}{182679551} a + \frac{65553691}{182679551}$, $\frac{1}{182679551} a^{15} + \frac{53994175}{182679551} a^{8} - \frac{19984965}{182679551} a^{7} - \frac{5279669}{182679551} a^{6} - \frac{40871154}{182679551} a^{5} + \frac{12014940}{182679551} a^{4} - \frac{45404612}{182679551} a^{3} + \frac{10637656}{182679551} a^{2} - \frac{32316963}{182679551} a - \frac{27265244}{182679551}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23684006739.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $43$ | 43.8.4.2 | $x^{8} - 79507 x^{2} + 68376020$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 43.8.4.2 | $x^{8} - 79507 x^{2} + 68376020$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |