Normalized defining polynomial
\( x^{16} - 6 x^{15} - 74 x^{14} + 472 x^{13} + 1777 x^{12} - 12730 x^{11} - 17357 x^{10} + 158732 x^{9} + 46897 x^{8} - 975158 x^{7} + 293460 x^{6} + 2722820 x^{5} - 1862220 x^{4} - 2393916 x^{3} + 2334136 x^{2} + 21526 x - 312839 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3307735506823056000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 29^{2}\cdot 6121^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29, 6121$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{4}{11} a^{13} - \frac{1}{11} a^{12} + \frac{3}{11} a^{11} - \frac{3}{11} a^{10} + \frac{3}{11} a^{9} - \frac{5}{11} a^{8} + \frac{4}{11} a^{7} + \frac{3}{11} a^{6} + \frac{3}{11} a^{5} - \frac{2}{11} a^{4} - \frac{2}{11} a^{3} + \frac{2}{11} a^{2} - \frac{1}{11} a - \frac{3}{11}$, $\frac{1}{1984420445853581910670661899603860646909} a^{15} + \frac{55941787901348327025469909011376342174}{1984420445853581910670661899603860646909} a^{14} - \frac{575139368589842139451545047267617939766}{1984420445853581910670661899603860646909} a^{13} - \frac{402732180851402824989718614700446918932}{1984420445853581910670661899603860646909} a^{12} - \frac{255622508830810988732570838794307185425}{1984420445853581910670661899603860646909} a^{11} + \frac{374145456738657847978613878785871154461}{1984420445853581910670661899603860646909} a^{10} + \frac{104813368372470313687448908778256715692}{1984420445853581910670661899603860646909} a^{9} + \frac{241648993438660804012945283437709342030}{1984420445853581910670661899603860646909} a^{8} + \frac{755991238531003390088063565541048059520}{1984420445853581910670661899603860646909} a^{7} - \frac{841281377432373301139727024314563207254}{1984420445853581910670661899603860646909} a^{6} + \frac{898469349310124122659153006420154447275}{1984420445853581910670661899603860646909} a^{5} - \frac{553674063228044490769990329174627636799}{1984420445853581910670661899603860646909} a^{4} - \frac{337318858234283763622206622531717396889}{1984420445853581910670661899603860646909} a^{3} - \frac{24719227577465015580463142553656341855}{180401858713961991879151081782169149719} a^{2} - \frac{645897461038540025957491473883882204712}{1984420445853581910670661899603860646909} a - \frac{870957779134299499475205348758890651859}{1984420445853581910670661899603860646909}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 256550726.18 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n797 are not computed |
| Character table for t16n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 6121 | Data not computed | ||||||