Normalized defining polynomial
\( x^{16} - x^{15} - 2706 x^{14} - 2359 x^{13} + 2824784 x^{12} + 6908002 x^{11} - 1451756694 x^{10} - 5433619055 x^{9} + 386060968586 x^{8} + 1889662834916 x^{7} - 49913000623296 x^{6} - 306922160402116 x^{5} + 2304642596194550 x^{4} + 18952504528520578 x^{3} + 27327366661749576 x^{2} - 19832907564347600 x - 20956414760060291 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330056782202198660511172839698929216685213271046904401=61^{14}\cdot 109^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2212.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{14} - \frac{2}{25} a^{13} - \frac{2}{25} a^{12} - \frac{1}{25} a^{11} + \frac{1}{25} a^{10} + \frac{4}{25} a^{9} + \frac{4}{25} a^{8} + \frac{9}{25} a^{7} - \frac{2}{5} a^{6} - \frac{1}{25} a^{5} + \frac{1}{5} a^{4} + \frac{7}{25} a^{3} - \frac{7}{25} a^{2} - \frac{11}{25} a + \frac{3}{25}$, $\frac{1}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{15} - \frac{19731490752685173226821871341213240623994246982086510652386003899473483178985085389887361929686293864253119277981}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{14} + \frac{21149100906964028717269278593317791597912611216478617240782820522887299772306173102932635723612555893332650891526}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{13} + \frac{38594519097097267695915324296056098055056377840087013644895218875132449360456012247877280424535103398516912384137}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{12} - \frac{24319499636386400908995840874962839689114395460790828814933736750312178576882451932869891468451394233633785959167}{249180137927362655785903876482479332250090970252825689409591719451701972338621496322516552003227822921039643121315} a^{11} + \frac{4846257872125673247891153101562503792610103048153071350500434262593921159777881737243033980243067644343236963259}{249180137927362655785903876482479332250090970252825689409591719451701972338621496322516552003227822921039643121315} a^{10} - \frac{443792591384536337234664547075762037084008781342737263689298772441616305090399322291922517586590416673780245882672}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{9} + \frac{276869477495052412253692096666432468329144898714856531058302396860278659267936143749296546755098128331708920083963}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{8} + \frac{541943062623995073163556005819226868492308356448769066024172436015448952262281397665910548158603061719453609448999}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{7} - \frac{312793318136272813760542820440826979844253335732434558123706488610003944776918315916607509229971606837863444939361}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{6} + \frac{496371723656694859729503012263172864223344209377056976257956386572534559756438279867206255746804716571342811005299}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{5} + \frac{13781285049484439835701789941481024050721143819347253883810844019060651604703435069179464984770571957502158707807}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{4} - \frac{116771532762587533793161577834881060687215056332490755020110843739690280032105992969491440909588045559093345517208}{249180137927362655785903876482479332250090970252825689409591719451701972338621496322516552003227822921039643121315} a^{3} + \frac{396915358760768136274199648816722024630835025445518032446668799611239710703659706534254496451447414027415566142222}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a^{2} + \frac{43235378309041745857568902575184548152120984194690586514171376719414305929264807112640516891739287421987126338497}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575} a - \frac{227379716802227281675077029664816811506669310613441700922250092509663373487316268356044292383040653604008407567507}{1245900689636813278929519382412396661250454851264128447047958597258509861693107481612582760016139114605198215606575}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7901580094650000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{109}) \), \(\Q(\sqrt{6649}) \), \(\Q(\sqrt{61}, \sqrt{109})\), 8.8.86404825551402914547601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $109$ | 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |