Normalized defining polynomial
\( x^{16} - 8 x^{15} - 180 x^{14} + 1300 x^{13} + 11182 x^{12} - 63596 x^{11} - 361460 x^{10} + 1315740 x^{9} + 6387559 x^{8} - 12019788 x^{7} - 57282828 x^{6} + 46017268 x^{5} + 234002138 x^{4} - 74291988 x^{3} - 364246632 x^{2} + 70705872 x + 84272481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(323391267567114489856000000000000=2^{24}\cdot 5^{12}\cdot 29^{6}\cdot 41^{2}\cdot 281^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{9} + \frac{5}{12} a^{7} - \frac{1}{3} a^{6} + \frac{1}{12} a^{5} - \frac{1}{6} a^{4} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{12} a^{12} + \frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{3} a^{7} + \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{12} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{10116} a^{14} - \frac{125}{10116} a^{13} - \frac{49}{3372} a^{12} - \frac{299}{10116} a^{11} - \frac{611}{10116} a^{10} - \frac{899}{10116} a^{9} + \frac{491}{5058} a^{8} + \frac{1357}{3372} a^{7} + \frac{4321}{10116} a^{6} + \frac{49}{1124} a^{5} + \frac{268}{843} a^{4} + \frac{523}{10116} a^{3} - \frac{287}{5058} a^{2} + \frac{15}{281} a + \frac{373}{1124}$, $\frac{1}{1864965313400840811695784282111887591733511055266692} a^{15} + \frac{15213495510904902234097003203632084055853428985}{1864965313400840811695784282111887591733511055266692} a^{14} + \frac{6288426521928297192649897020617220452058464882555}{621655104466946937231928094037295863911170351755564} a^{13} - \frac{76074552992625473938127953425061995777476339156165}{1864965313400840811695784282111887591733511055266692} a^{12} - \frac{36467634897754945927804596208114250693806665306325}{932482656700420405847892141055943795866755527633346} a^{11} - \frac{62908124809755166728369878309095660993510419733993}{932482656700420405847892141055943795866755527633346} a^{10} - \frac{54106620199039872386795640535017488120955397032134}{466241328350210202923946070527971897933377763816673} a^{9} - \frac{1259302587704038668743837712315972197132141264233}{17268197346304081589775780389924885108643620882099} a^{8} - \frac{51688718549988600356174403929707184797687264051189}{932482656700420405847892141055943795866755527633346} a^{7} + \frac{47274594022996921547133679545307688889399988878779}{155413776116736734307982023509323965977792587938891} a^{6} + \frac{10475851990507664283814244647395084595234567618213}{155413776116736734307982023509323965977792587938891} a^{5} - \frac{227439800226708511253038162733077713254629645417175}{466241328350210202923946070527971897933377763816673} a^{4} - \frac{349811741246376203565117606444463532931698752182325}{1864965313400840811695784282111887591733511055266692} a^{3} + \frac{32415929485121744804835581717745949595462766979525}{69072789385216326359103121559699540434574483528396} a^{2} - \frac{68302102568952241316436175160862445326608128860509}{207218368155648979077309364679098621303723450585188} a + \frac{10655652928691583155160901097618441566161980403821}{69072789385216326359103121559699540434574483528396}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 115209190933 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 97 conjugacy class representatives for t16n1086 are not computed |
| Character table for t16n1086 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 4.4.58000.1, 4.4.725.1, 8.8.3364000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||
| 281 | Data not computed | ||||||