Normalized defining polynomial
\( x^{16} - 5 x^{15} - 77 x^{14} + 368 x^{13} + 2206 x^{12} - 10163 x^{11} - 29408 x^{10} + 130754 x^{9} + 189583 x^{8} - 798655 x^{7} - 601077 x^{6} + 2153889 x^{5} + 1216201 x^{4} - 2470290 x^{3} - 1359220 x^{2} + 997927 x + 589493 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31236842166910780816202985728=2^{8}\cdot 17^{15}\cdot 6529^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 6529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{20431099816652561319026254906297050162079} a^{15} + \frac{5729459531456505287614483011945425642335}{20431099816652561319026254906297050162079} a^{14} + \frac{1062241871757602782377010492967803962278}{20431099816652561319026254906297050162079} a^{13} + \frac{7004567349698257969498022449541937823687}{20431099816652561319026254906297050162079} a^{12} + \frac{3348128148990902191157329769527626251395}{20431099816652561319026254906297050162079} a^{11} - \frac{5048443828424985717203808339988230894553}{20431099816652561319026254906297050162079} a^{10} + \frac{2982158459629926842760348538629546411023}{20431099816652561319026254906297050162079} a^{9} + \frac{7303800965839466286049132530830293913027}{20431099816652561319026254906297050162079} a^{8} + \frac{6266621936566396127201744744533889001321}{20431099816652561319026254906297050162079} a^{7} + \frac{4582693163758060266013144287707292946987}{20431099816652561319026254906297050162079} a^{6} + \frac{7499512752322156180611784993916847543348}{20431099816652561319026254906297050162079} a^{5} + \frac{257312344680508393937459134485730525145}{20431099816652561319026254906297050162079} a^{4} + \frac{4998223480676190163049266629722569285771}{20431099816652561319026254906297050162079} a^{3} - \frac{10181102915174688805715253388503384980965}{20431099816652561319026254906297050162079} a^{2} - \frac{2946396712697547770536135634699567961803}{20431099816652561319026254906297050162079} a + \frac{635850005987822480905404283274105662550}{20431099816652561319026254906297050162079}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 892154070.873 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 6529 | Data not computed | ||||||