Normalized defining polynomial
\( x^{16} - 8 x^{15} - 84 x^{14} + 608 x^{13} + 2556 x^{12} - 17344 x^{11} - 33076 x^{10} + 238504 x^{9} + 158082 x^{8} - 1675736 x^{7} + 137564 x^{6} + 5810256 x^{5} - 3144804 x^{4} - 8237872 x^{3} + 6583356 x^{2} + 1846232 x - 1112399 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(303413777032806400000000000000=2^{44}\cdot 5^{14}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} + \frac{1}{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{4}$, $\frac{1}{44} a^{13} + \frac{3}{44} a^{12} - \frac{3}{44} a^{10} + \frac{1}{11} a^{8} + \frac{4}{11} a^{7} + \frac{2}{11} a^{6} + \frac{5}{44} a^{5} - \frac{9}{44} a^{4} + \frac{1}{11} a^{3} + \frac{1}{44} a^{2} + \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{7348} a^{14} + \frac{41}{7348} a^{13} - \frac{733}{7348} a^{12} - \frac{333}{7348} a^{11} + \frac{359}{7348} a^{10} - \frac{73}{7348} a^{9} - \frac{899}{7348} a^{8} + \frac{20}{167} a^{7} + \frac{1409}{7348} a^{6} + \frac{3481}{7348} a^{5} - \frac{129}{7348} a^{4} - \frac{2685}{7348} a^{3} + \frac{3375}{7348} a^{2} - \frac{3573}{7348} a + \frac{2649}{7348}$, $\frac{1}{1145433917237061268379862235257508} a^{15} + \frac{16938798161449891551871910925}{286358479309265317094965558814377} a^{14} - \frac{12159153567929080818977675075479}{1145433917237061268379862235257508} a^{13} + \frac{54808605956391274071372818855023}{572716958618530634189931117628754} a^{12} + \frac{8829176762315254693345881472125}{286358479309265317094965558814377} a^{11} + \frac{80886645886834908457108906015}{26032589028115028826815050801307} a^{10} - \frac{59267923810149301609165038007459}{572716958618530634189931117628754} a^{9} - \frac{115703794797297496720966715201257}{1145433917237061268379862235257508} a^{8} - \frac{49755972836904218085968061315169}{104130356112460115307260203205228} a^{7} - \frac{130506678348764556059403237195744}{286358479309265317094965558814377} a^{6} + \frac{57679524346887964859443508913229}{1145433917237061268379862235257508} a^{5} - \frac{86877152031206215400656803511359}{572716958618530634189931117628754} a^{4} + \frac{8455113538951240877055558463479}{286358479309265317094965558814377} a^{3} + \frac{39218901928412251158696056526991}{286358479309265317094965558814377} a^{2} - \frac{200551016299876875528045613342377}{572716958618530634189931117628754} a - \frac{185834647812819262512263144385229}{1145433917237061268379862235257508}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4017204622.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||