Properties

Label 16.16.3025960667...7536.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{52}\cdot 7^{4}\cdot 23^{4}$
Root discriminant $33.89$
Ramified primes $2, 7, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^5.C_2$ (as 16T79)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 80, 168, -508, -1784, -740, 2160, 1665, -1008, -992, 208, 254, -16, -28, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 28*x^14 - 16*x^13 + 254*x^12 + 208*x^11 - 992*x^10 - 1008*x^9 + 1665*x^8 + 2160*x^7 - 740*x^6 - 1784*x^5 - 508*x^4 + 168*x^3 + 80*x^2 - 2)
 
gp: K = bnfinit(x^16 - 28*x^14 - 16*x^13 + 254*x^12 + 208*x^11 - 992*x^10 - 1008*x^9 + 1665*x^8 + 2160*x^7 - 740*x^6 - 1784*x^5 - 508*x^4 + 168*x^3 + 80*x^2 - 2, 1)
 

Normalized defining polynomial

\( x^{16} - 28 x^{14} - 16 x^{13} + 254 x^{12} + 208 x^{11} - 992 x^{10} - 1008 x^{9} + 1665 x^{8} + 2160 x^{7} - 740 x^{6} - 1784 x^{5} - 508 x^{4} + 168 x^{3} + 80 x^{2} - 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3025960667798491717697536=2^{52}\cdot 7^{4}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{64026329513} a^{15} + \frac{20307478526}{64026329513} a^{14} - \frac{28644489287}{64026329513} a^{13} - \frac{27626374797}{64026329513} a^{12} + \frac{30913800696}{64026329513} a^{11} - \frac{24820225465}{64026329513} a^{10} - \frac{19722701986}{64026329513} a^{9} + \frac{741590910}{64026329513} a^{8} - \frac{18606153516}{64026329513} a^{7} + \frac{876247350}{64026329513} a^{6} - \frac{31359340033}{64026329513} a^{5} - \frac{3897975731}{64026329513} a^{4} - \frac{22419422546}{64026329513} a^{3} - \frac{26473425730}{64026329513} a^{2} - \frac{25667165831}{64026329513} a - \frac{23739971447}{64026329513}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 30621154.8732 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^5.C_2$ (as 16T79):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $C_2^5.C_2$
Character table for $C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.47104.1, \(\Q(\zeta_{16})^+\), 4.4.10304.1, 4.4.7168.1, 4.4.23552.1, 4.4.14336.1, 4.4.329728.1, 8.8.1739528863744.3, 8.8.35500589056.1, 8.8.27180138496.1, 8.8.108720553984.3, 8.8.3288334336.1, 8.8.1739528863744.1, 8.8.108720553984.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.26.4$x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$$8$$1$$26$$C_2^2:C_4$$[2, 3, 7/2, 4]$
2.8.26.4$x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$$8$$1$$26$$C_2^2:C_4$$[2, 3, 7/2, 4]$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$