Properties

Label 16.16.2902974096...0000.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{24}\cdot 5^{8}\cdot 29^{8}\cdot 941^{2}$
Root discriminant $80.15$
Ramified primes $2, 5, 29, 941$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1439

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![57121, 0, -276026, 0, 403493, 0, -267118, 0, 90424, 0, -16238, 0, 1513, 0, -66, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 66*x^14 + 1513*x^12 - 16238*x^10 + 90424*x^8 - 267118*x^6 + 403493*x^4 - 276026*x^2 + 57121)
 
gp: K = bnfinit(x^16 - 66*x^14 + 1513*x^12 - 16238*x^10 + 90424*x^8 - 267118*x^6 + 403493*x^4 - 276026*x^2 + 57121, 1)
 

Normalized defining polynomial

\( x^{16} - 66 x^{14} + 1513 x^{12} - 16238 x^{10} + 90424 x^{8} - 267118 x^{6} + 403493 x^{4} - 276026 x^{2} + 57121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2902974096966413457817600000000=2^{24}\cdot 5^{8}\cdot 29^{8}\cdot 941^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $80.15$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 941$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{20} a^{10} - \frac{1}{4} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} + \frac{3}{20} a^{4} + \frac{1}{10} a^{2} + \frac{1}{4} a - \frac{1}{10}$, $\frac{1}{20} a^{11} - \frac{1}{4} a^{8} - \frac{1}{10} a^{7} + \frac{3}{20} a^{5} + \frac{1}{10} a^{3} + \frac{1}{4} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{40} a^{12} + \frac{1}{5} a^{8} - \frac{1}{20} a^{6} - \frac{1}{5} a^{4} - \frac{3}{10} a^{2} - \frac{3}{8}$, $\frac{1}{40} a^{13} - \frac{1}{20} a^{9} - \frac{1}{20} a^{7} - \frac{1}{4} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{20} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{916653974000} a^{14} - \frac{1014727587}{916653974000} a^{12} + \frac{405553497}{45832698700} a^{10} + \frac{24764943811}{458326987000} a^{8} + \frac{3356430081}{458326987000} a^{6} + \frac{9679261677}{22916349350} a^{4} + \frac{274517059813}{916653974000} a^{2} - \frac{140244875599}{916653974000}$, $\frac{1}{438160599572000} a^{15} - \frac{1}{1833307948000} a^{14} + \frac{273981464613}{438160599572000} a^{13} + \frac{1014727587}{1833307948000} a^{12} + \frac{426649651407}{21908029978600} a^{11} - \frac{405553497}{91665397400} a^{10} + \frac{437259232111}{219080299786000} a^{9} - \frac{24764943811}{916653974000} a^{8} - \frac{47066825134819}{219080299786000} a^{7} + \frac{225807063419}{916653974000} a^{6} + \frac{388688482451}{5477007494650} a^{5} - \frac{9679261677}{45832698700} a^{4} + \frac{8982729812813}{438160599572000} a^{3} + \frac{642136914187}{1833307948000} a^{2} - \frac{83189094919999}{438160599572000} a - \frac{318082111401}{1833307948000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23809840862.2 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1439:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1439 are not computed
Character table for t16n1439 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.106488227360000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.19$x^{8} + 12 x^{4} + 80$$4$$2$$12$$(C_8:C_2):C_2$$[2, 2, 2]^{4}$
2.8.12.20$x^{8} + 8 x^{6} + 12 x^{4} + 80$$4$$2$$12$$C_2^3: C_4$$[2, 2, 2]^{4}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$29$29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
941Data not computed