Normalized defining polynomial
\( x^{16} - 4 x^{15} - 26 x^{14} + 116 x^{13} + 193 x^{12} - 1108 x^{11} - 316 x^{10} + 4348 x^{9} - 1044 x^{8} - 7132 x^{7} + 2894 x^{6} + 4760 x^{5} - 2020 x^{4} - 1036 x^{3} + 348 x^{2} + 56 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28179280429056000000000000=2^{44}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(240=2^{4}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{240}(1,·)$, $\chi_{240}(197,·)$, $\chi_{240}(137,·)$, $\chi_{240}(77,·)$, $\chi_{240}(173,·)$, $\chi_{240}(17,·)$, $\chi_{240}(229,·)$, $\chi_{240}(49,·)$, $\chi_{240}(169,·)$, $\chi_{240}(109,·)$, $\chi_{240}(113,·)$, $\chi_{240}(53,·)$, $\chi_{240}(233,·)$, $\chi_{240}(121,·)$, $\chi_{240}(61,·)$, $\chi_{240}(181,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{31} a^{12} - \frac{12}{31} a^{11} - \frac{6}{31} a^{10} - \frac{2}{31} a^{9} - \frac{10}{31} a^{8} + \frac{5}{31} a^{7} - \frac{1}{31} a^{6} + \frac{4}{31} a^{5} - \frac{15}{31} a^{4} + \frac{14}{31} a^{3} + \frac{15}{31} a^{2} - \frac{9}{31} a - \frac{15}{31}$, $\frac{1}{31} a^{13} + \frac{5}{31} a^{11} - \frac{12}{31} a^{10} - \frac{3}{31} a^{9} + \frac{9}{31} a^{8} - \frac{3}{31} a^{7} - \frac{8}{31} a^{6} + \frac{2}{31} a^{5} - \frac{11}{31} a^{4} - \frac{3}{31} a^{3} - \frac{15}{31} a^{2} + \frac{1}{31} a + \frac{6}{31}$, $\frac{1}{7240391} a^{14} - \frac{68793}{7240391} a^{13} - \frac{113240}{7240391} a^{12} + \frac{10253}{7240391} a^{11} - \frac{1004250}{7240391} a^{10} + \frac{1495651}{7240391} a^{9} + \frac{2054692}{7240391} a^{8} - \frac{1737277}{7240391} a^{7} + \frac{89564}{7240391} a^{6} - \frac{1315140}{7240391} a^{5} + \frac{3179338}{7240391} a^{4} - \frac{65961}{233561} a^{3} + \frac{9682}{233561} a^{2} - \frac{2192734}{7240391} a - \frac{3389162}{7240391}$, $\frac{1}{2961319919} a^{15} + \frac{136}{2961319919} a^{14} - \frac{46669154}{2961319919} a^{13} - \frac{9009966}{2961319919} a^{12} - \frac{917991285}{2961319919} a^{11} - \frac{810669260}{2961319919} a^{10} - \frac{949103321}{2961319919} a^{9} + \frac{918470946}{2961319919} a^{8} - \frac{227338434}{2961319919} a^{7} + \frac{570514792}{2961319919} a^{6} + \frac{676347327}{2961319919} a^{5} - \frac{609599323}{2961319919} a^{4} + \frac{1139166482}{2961319919} a^{3} + \frac{86214984}{2961319919} a^{2} + \frac{1352399121}{2961319919} a + \frac{664382723}{2961319919}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33542030.6703 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||