Normalized defining polynomial
\( x^{16} - 2 x^{15} - 94 x^{14} + 310 x^{13} + 3058 x^{12} - 13934 x^{11} - 38738 x^{10} + 266166 x^{9} + 83602 x^{8} - 2407142 x^{7} + 2128918 x^{6} + 9687290 x^{5} - 16400650 x^{4} - 11366298 x^{3} + 34410890 x^{2} - 6290462 x - 12845159 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2802086158223343616000000000000=2^{28}\cdot 5^{12}\cdot 101^{4}\cdot 641^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{3}{10} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} - \frac{1}{10} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{10} a^{14} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{31417084469625600470477390} a^{15} - \frac{117339651255887867464413}{15708542234812800235238695} a^{14} + \frac{336123040464012913692293}{31417084469625600470477390} a^{13} + \frac{735689289200125661722043}{31417084469625600470477390} a^{12} - \frac{6758773634766803435597517}{31417084469625600470477390} a^{11} - \frac{198309066949711958083647}{15708542234812800235238695} a^{10} - \frac{1091305266279458863046574}{15708542234812800235238695} a^{9} - \frac{5375063828982933786215051}{31417084469625600470477390} a^{8} + \frac{8937954176256722259885931}{31417084469625600470477390} a^{7} + \frac{488216652359985875015366}{1428049294073890930476245} a^{6} - \frac{19017309454758974264787}{571219717629556372190498} a^{5} - \frac{3748366591443523076557291}{31417084469625600470477390} a^{4} + \frac{324189740292769197654431}{6283416893925120094095478} a^{3} - \frac{4564874670025560229049418}{15708542234812800235238695} a^{2} + \frac{453059995192759958046719}{15708542234812800235238695} a - \frac{3148546785378717013508799}{31417084469625600470477390}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14205869984.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.6464000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||
| 641 | Data not computed | ||||||