Normalized defining polynomial
\( x^{16} - x^{15} - 149 x^{14} + 129 x^{13} + 7381 x^{12} - 8750 x^{11} - 146355 x^{10} + 254535 x^{9} + 1101440 x^{8} - 2333750 x^{7} - 3101025 x^{6} + 7870550 x^{5} + 2368075 x^{4} - 8288250 x^{3} - 1506750 x^{2} + 2731125 x + 822625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(275103767122062920083301025390625=5^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{4}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{1}{10} a^{6} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{50} a^{11} - \frac{1}{50} a^{10} + \frac{1}{50} a^{9} + \frac{2}{25} a^{8} + \frac{21}{50} a^{7} - \frac{3}{10} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{1}{2} a$, $\frac{1}{150} a^{12} + \frac{1}{150} a^{11} - \frac{1}{150} a^{10} - \frac{7}{75} a^{9} + \frac{3}{50} a^{8} - \frac{1}{50} a^{7} + \frac{2}{5} a^{6} + \frac{1}{15} a^{5} + \frac{11}{30} a^{4} - \frac{4}{15} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{150} a^{13} + \frac{1}{150} a^{11} - \frac{1}{150} a^{10} + \frac{11}{150} a^{9} - \frac{1}{10} a^{8} + \frac{11}{25} a^{7} + \frac{4}{15} a^{6} + \frac{1}{5} a^{5} - \frac{13}{30} a^{4} - \frac{7}{15} a^{3} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{53250} a^{14} - \frac{61}{53250} a^{13} + \frac{61}{53250} a^{12} - \frac{401}{53250} a^{11} - \frac{74}{8875} a^{10} - \frac{4}{1065} a^{9} + \frac{112}{1775} a^{8} + \frac{1049}{10650} a^{7} + \frac{236}{5325} a^{6} + \frac{317}{1065} a^{5} - \frac{701}{2130} a^{4} + \frac{35}{426} a^{3} + \frac{68}{1065} a^{2} - \frac{61}{142} a - \frac{100}{213}$, $\frac{1}{54695641944540390245584206098385750} a^{15} - \frac{9284796595920287915966087031}{18231880648180130081861402032795250} a^{14} - \frac{5865653761539123206821751943587}{9115940324090065040930701016397625} a^{13} + \frac{53184904098380021659196712866536}{27347820972270195122792103049192875} a^{12} - \frac{3658768055096136340154879575414}{1439358998540536585410110686799625} a^{11} + \frac{1204909756908589187622979369583639}{27347820972270195122792103049192875} a^{10} - \frac{909269505649686388733384717436307}{10939128388908078049116841219677150} a^{9} + \frac{56385944050725145129931639956553}{575743599416214634164044274719850} a^{8} + \frac{34797704411150553186137226588503}{729275225927205203274456081311810} a^{7} + \frac{580806387433049001749270221092336}{1823188064818013008186140203279525} a^{6} - \frac{714593107946454849852512150253649}{2187825677781615609823368243935430} a^{5} - \frac{985933391051030699420005398042523}{2187825677781615609823368243935430} a^{4} - \frac{162192446132107319647796886119579}{1093912838890807804911684121967715} a^{3} - \frac{476957330663844332900537123749531}{1093912838890807804911684121967715} a^{2} + \frac{47032634934797841289965799524133}{437565135556323121964673648787086} a + \frac{186266271732375348890909114144131}{437565135556323121964673648787086}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124311294467 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |