Normalized defining polynomial
\( x^{16} - 7 x^{15} - 3676 x^{14} + 19982 x^{13} + 5392416 x^{12} - 23875039 x^{11} - 4058995913 x^{10} + 16436844988 x^{9} + 1683967369007 x^{8} - 7299192869405 x^{7} - 382817796251067 x^{6} + 2024106400885404 x^{5} + 43382677650078083 x^{4} - 300399178945081685 x^{3} - 1649219797768775897 x^{2} + 17337036358118728404 x - 35542411485577782059 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26255811630589850827051927649928110197766220114319683841=61^{14}\cdot 149^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2908.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{4}{19} a^{12} - \frac{9}{19} a^{11} + \frac{7}{19} a^{10} + \frac{5}{19} a^{9} - \frac{9}{19} a^{8} + \frac{6}{19} a^{7} + \frac{1}{19} a^{6} - \frac{1}{19} a^{5} + \frac{2}{19} a^{4} - \frac{6}{19} a^{3} - \frac{8}{19} a^{2} + \frac{7}{19} a$, $\frac{1}{10849} a^{14} + \frac{93}{10849} a^{13} + \frac{4391}{10849} a^{12} + \frac{1813}{10849} a^{11} + \frac{16}{571} a^{10} + \frac{3212}{10849} a^{9} - \frac{5256}{10849} a^{8} - \frac{1773}{10849} a^{7} - \frac{1158}{10849} a^{6} + \frac{154}{571} a^{5} - \frac{40}{10849} a^{4} + \frac{4293}{10849} a^{3} - \frac{1396}{10849} a^{2} - \frac{765}{10849} a - \frac{126}{571}$, $\frac{1}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{15} - \frac{2595612697919574054824542207049293473501756394812104720299060113856578693173772331571467103976786870511681944449862}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{14} - \frac{137301199000820469415936297536486018063699527992857698441185086083795055223459425602929013799738529376297123141674668}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{13} - \frac{6406603078189528170775545903151291373449144108432806183933692143687987131654334211082195361791393185448160937762058230}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{12} - \frac{18712064237336460256334856949192526123576019692783298752105603328008090087001052227687840434984866534719217862180281061}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{11} + \frac{22333555040147323722746446625034207527514103641945749580782436504561413383409026848709468155488850413881108341174807388}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{10} + \frac{30126122040185758712242189921366386625072113608880117397837204115410704795734496913040141204132124324563435495030977896}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{9} - \frac{10035029751255546166712624799167764732642035810494951071256150852428503655208213593666702493972918432213054733306963006}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{8} - \frac{3613481441177662908332748610914069417969697126395020070417401787455311519784724138326459868255342271642894301934611298}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{7} + \frac{18148182464525383156714681450961650512746628681977493729944007675835377385135297882768149876276787015369328407942631228}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{6} - \frac{16528891662912774208546529284240038786144943319083039656348376239834574582715044860622795397049521706633421341780159834}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{5} + \frac{15491786770615111286996771697048684856502192922096132196096110035382067846436525849473612664616707206060365418734686978}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{4} + \frac{15078738900051854691730586381054658525068145787264378722814737597197078159539839822715883287242016048308463892411209396}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{3} + \frac{29207876028938169798661806860436444174530546897569265793168905273634446785599220303539819741885372768720936517533273254}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a^{2} + \frac{11893799401668569218710487766521620556895879782775059824014783077749228783464666258786408391492803884149113712841123488}{62617839997947811781944638876087237896012593613181556489871291765722486169297358318595153530962300961164534881136879651} a + \frac{1233767406074821041348900896155898754006929369011189571448222761261819938877489967131931251683218211094000983799341984}{3295675789365674304312875730320380941895399663851660867887962724511709798384071490452376501629594787429712362165098929}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16137194048900000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{9089}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{149}) \), \(\Q(\sqrt{61}, \sqrt{149})\), 8.8.563763066196879006536961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $149$ | 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |