Normalized defining polynomial
\( x^{16} - x^{15} - 386 x^{14} - 978 x^{13} + 33397 x^{12} + 90172 x^{11} - 1157913 x^{10} - 2853491 x^{9} + 18517725 x^{8} + 38672703 x^{7} - 135765373 x^{6} - 223518780 x^{5} + 384304713 x^{4} + 466800116 x^{3} - 276793968 x^{2} - 345202792 x - 53337296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26252865470156848284984700456389559681=13^{12}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{9} + \frac{13}{34} a^{8} - \frac{7}{34} a^{7} - \frac{4}{17} a^{6} - \frac{6}{17} a^{5} + \frac{3}{34} a^{4} + \frac{13}{34} a^{3} + \frac{1}{17} a^{2} - \frac{13}{34} a$, $\frac{1}{34} a^{11} - \frac{3}{34} a^{9} + \frac{11}{34} a^{8} - \frac{1}{17} a^{7} - \frac{5}{17} a^{6} - \frac{11}{34} a^{5} - \frac{9}{34} a^{4} - \frac{7}{17} a^{3} - \frac{5}{34} a^{2} + \frac{8}{17} a$, $\frac{1}{102} a^{12} - \frac{1}{102} a^{11} + \frac{1}{102} a^{10} - \frac{1}{51} a^{9} - \frac{29}{102} a^{8} - \frac{1}{51} a^{7} + \frac{35}{102} a^{6} - \frac{2}{17} a^{5} + \frac{41}{102} a^{4} + \frac{9}{34} a^{3} - \frac{5}{102} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{102} a^{13} - \frac{1}{102} a^{10} + \frac{10}{51} a^{9} + \frac{10}{51} a^{8} + \frac{11}{34} a^{7} - \frac{14}{51} a^{6} - \frac{11}{51} a^{5} + \frac{1}{6} a^{4} + \frac{11}{51} a^{3} + \frac{2}{17} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{3468} a^{14} + \frac{7}{3468} a^{13} + \frac{1}{289} a^{12} + \frac{25}{1734} a^{11} + \frac{25}{3468} a^{10} - \frac{179}{867} a^{9} + \frac{671}{3468} a^{8} + \frac{1175}{3468} a^{7} - \frac{275}{3468} a^{6} + \frac{1219}{3468} a^{5} - \frac{267}{1156} a^{4} - \frac{404}{867} a^{3} - \frac{1073}{3468} a^{2} - \frac{86}{289} a + \frac{13}{51}$, $\frac{1}{922542905854476364693255557678216814621703368928925598584} a^{15} + \frac{36477412733004062188639963559166039834008835757572893}{307514301951492121564418519226072271540567789642975199528} a^{14} - \frac{619909404682291457222901102121178384563947674235157193}{461271452927238182346627778839108407310851684464462799292} a^{13} - \frac{6737843288756118010722838443138622297140471544319297}{2938034732020625365265145088147187307712431111238616556} a^{12} - \frac{5673413011678245709826891157946139511913371334763975227}{922542905854476364693255557678216814621703368928925598584} a^{11} - \frac{3493819949045829728415880709476941254254226769282777}{38439287743936515195552314903259033942570973705371899941} a^{10} - \frac{40271956985986831683022073461146081463342170408861580841}{922542905854476364693255557678216814621703368928925598584} a^{9} - \frac{18404776729864982276873160059880702855106504155810433557}{307514301951492121564418519226072271540567789642975199528} a^{8} - \frac{31878940034038607915254480348068808828934771095368553975}{922542905854476364693255557678216814621703368928925598584} a^{7} + \frac{103207325819092436395489333190200358284223983555235888837}{307514301951492121564418519226072271540567789642975199528} a^{6} - \frac{211430483854461794041008936842925363882510232115088461677}{922542905854476364693255557678216814621703368928925598584} a^{5} - \frac{4573281289811902054641779863553534170022464588836539221}{115317863231809545586656944709777101827712921116115699823} a^{4} + \frac{69092448870955845052222169003657527452707658851193758519}{307514301951492121564418519226072271540567789642975199528} a^{3} - \frac{41844960443484641797477612549904431411876237587200984773}{230635726463619091173313889419554203655425842232231399646} a^{2} - \frac{40949515602633531122478557923043725110433668204671785543}{230635726463619091173313889419554203655425842232231399646} a + \frac{5020776327676279935227767631881222698857258516437555}{43206393117950373018605074825693930995771045753509067}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60692462322400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |