Normalized defining polynomial
\( x^{16} - 4 x^{15} - 148 x^{14} + 468 x^{13} + 7455 x^{12} - 21158 x^{11} - 157868 x^{10} + 460454 x^{9} + 1427926 x^{8} - 4645800 x^{7} - 4381410 x^{6} + 18195800 x^{5} + 2364300 x^{4} - 23793150 x^{3} + 3291250 x^{2} + 1823000 x - 296375 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258498575149187174400000000000000=2^{24}\cdot 3^{12}\cdot 5^{14}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{8} - \frac{1}{5} a^{3}$, $\frac{1}{475} a^{14} - \frac{29}{475} a^{13} - \frac{13}{475} a^{12} + \frac{43}{475} a^{11} - \frac{2}{95} a^{10} + \frac{177}{475} a^{9} - \frac{23}{475} a^{8} - \frac{126}{475} a^{7} + \frac{4}{25} a^{6} - \frac{31}{95} a^{5} + \frac{32}{95} a^{4} + \frac{43}{95} a^{3} + \frac{8}{19} a^{2} - \frac{8}{19} a + \frac{1}{19}$, $\frac{1}{5264415472991624285225495703712401642324609275} a^{15} - \frac{445661038279161637909386139934525342067653}{1052883094598324857045099140742480328464921855} a^{14} + \frac{287047377720200578174874309890499739814521296}{5264415472991624285225495703712401642324609275} a^{13} - \frac{61751738399158687327493950851214288941877214}{5264415472991624285225495703712401642324609275} a^{12} + \frac{299085569599794464039340268738089766187118272}{5264415472991624285225495703712401642324609275} a^{11} + \frac{43857850585153485230686582874063840799860092}{5264415472991624285225495703712401642324609275} a^{10} - \frac{134026363552504906126420723996583600243026932}{1052883094598324857045099140742480328464921855} a^{9} - \frac{2299659451435382789471137413232337520120590073}{5264415472991624285225495703712401642324609275} a^{8} + \frac{1762377555240904321984015837073130820324139687}{5264415472991624285225495703712401642324609275} a^{7} + \frac{953243982426563871712788944956008150474880544}{5264415472991624285225495703712401642324609275} a^{6} + \frac{59751509877582755271004168243099723015052463}{210576618919664971409019828148496065692984371} a^{5} - \frac{49052521806152714161419502530011042545855077}{210576618919664971409019828148496065692984371} a^{4} - \frac{27098609600050657428281006066291275852994667}{210576618919664971409019828148496065692984371} a^{3} + \frac{84286874846753057314781609953957681178240286}{210576618919664971409019828148496065692984371} a^{2} - \frac{37763364054775684499966305540959888030951253}{210576618919664971409019828148496065692984371} a + \frac{23173252684917333452502552828760999461157232}{210576618919664971409019828148496065692984371}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37846609280.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times Q_8).C_2^3$ (as 16T226):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times Q_8).C_2^3$ |
| Character table for $(C_2\times Q_8).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 4.4.16400.1, 4.4.738000.1, 8.8.544644000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |