Properties

Label 16.16.2526881062...0000.1
Degree $16$
Signature $[16, 0]$
Discriminant $2^{36}\cdot 5^{12}\cdot 197^{4}$
Root discriminant $59.59$
Ramified primes $2, 5, 197$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1049

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2549, 24532, -86440, 125736, -21664, -139552, 129786, 6120, -59021, 21260, 5914, -4656, 296, 292, -50, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 50*x^14 + 292*x^13 + 296*x^12 - 4656*x^11 + 5914*x^10 + 21260*x^9 - 59021*x^8 + 6120*x^7 + 129786*x^6 - 139552*x^5 - 21664*x^4 + 125736*x^3 - 86440*x^2 + 24532*x - 2549)
 
gp: K = bnfinit(x^16 - 4*x^15 - 50*x^14 + 292*x^13 + 296*x^12 - 4656*x^11 + 5914*x^10 + 21260*x^9 - 59021*x^8 + 6120*x^7 + 129786*x^6 - 139552*x^5 - 21664*x^4 + 125736*x^3 - 86440*x^2 + 24532*x - 2549, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 50 x^{14} + 292 x^{13} + 296 x^{12} - 4656 x^{11} + 5914 x^{10} + 21260 x^{9} - 59021 x^{8} + 6120 x^{7} + 129786 x^{6} - 139552 x^{5} - 21664 x^{4} + 125736 x^{3} - 86440 x^{2} + 24532 x - 2549 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(25268810621648896000000000000=2^{36}\cdot 5^{12}\cdot 197^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 197$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{197} a^{14} + \frac{94}{197} a^{13} + \frac{63}{197} a^{12} + \frac{33}{197} a^{11} + \frac{17}{197} a^{10} - \frac{74}{197} a^{9} + \frac{3}{197} a^{8} + \frac{61}{197} a^{7} + \frac{36}{197} a^{6} - \frac{95}{197} a^{5} - \frac{41}{197} a^{4} + \frac{12}{197} a^{3} - \frac{59}{197} a^{2} - \frac{69}{197} a - \frac{5}{197}$, $\frac{1}{1030081609868395667223} a^{15} - \frac{856288021731723095}{1030081609868395667223} a^{14} - \frac{29148038532183767280}{343360536622798555741} a^{13} + \frac{91694114704184357722}{1030081609868395667223} a^{12} + \frac{126785791629914983015}{1030081609868395667223} a^{11} - \frac{214103638364582475691}{1030081609868395667223} a^{10} - \frac{398244315427642157275}{1030081609868395667223} a^{9} - \frac{79603922626532002116}{343360536622798555741} a^{8} - \frac{365681035199399964494}{1030081609868395667223} a^{7} - \frac{7599714488350071241}{1030081609868395667223} a^{6} - \frac{488757218191382837951}{1030081609868395667223} a^{5} - \frac{77665772642731033550}{1030081609868395667223} a^{4} - \frac{419370549714716203661}{1030081609868395667223} a^{3} + \frac{408870211200686883773}{1030081609868395667223} a^{2} - \frac{123857015884404956638}{343360536622798555741} a + \frac{79523747454892030984}{1030081609868395667223}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2126638809.91 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1049:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 768
The 31 conjugacy class representatives for t16n1049
Character table for t16n1049 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.63040.1, 8.8.99351040000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$197$197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
197.4.2.1$x^{4} + 985 x^{2} + 349281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
197.4.2.1$x^{4} + 985 x^{2} + 349281$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$