Properties

Label 16.16.2516048522...5625.1
Degree $16$
Signature $[16, 0]$
Discriminant $5^{8}\cdot 29^{6}\cdot 101^{8}$
Root discriminant $79.44$
Ramified primes $5, 29, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2.C_2^2:D_4$ (as 16T225)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![189599, -257898, -1548394, -250227, 1924899, 389818, -1005363, -137456, 258089, 19962, -34507, -1375, 2402, 51, -81, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 81*x^14 + 51*x^13 + 2402*x^12 - 1375*x^11 - 34507*x^10 + 19962*x^9 + 258089*x^8 - 137456*x^7 - 1005363*x^6 + 389818*x^5 + 1924899*x^4 - 250227*x^3 - 1548394*x^2 - 257898*x + 189599)
 
gp: K = bnfinit(x^16 - x^15 - 81*x^14 + 51*x^13 + 2402*x^12 - 1375*x^11 - 34507*x^10 + 19962*x^9 + 258089*x^8 - 137456*x^7 - 1005363*x^6 + 389818*x^5 + 1924899*x^4 - 250227*x^3 - 1548394*x^2 - 257898*x + 189599, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 81 x^{14} + 51 x^{13} + 2402 x^{12} - 1375 x^{11} - 34507 x^{10} + 19962 x^{9} + 258089 x^{8} - 137456 x^{7} - 1005363 x^{6} + 389818 x^{5} + 1924899 x^{4} - 250227 x^{3} - 1548394 x^{2} - 257898 x + 189599 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2516048522690679671625047265625=5^{8}\cdot 29^{6}\cdot 101^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $79.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{44603041961445299377636723595085497057} a^{15} - \frac{9187644651160170948581069256411627582}{44603041961445299377636723595085497057} a^{14} - \frac{1283117616638304966490737066940351206}{44603041961445299377636723595085497057} a^{13} + \frac{11691488087969771707464785758684653466}{44603041961445299377636723595085497057} a^{12} - \frac{17681845124458147819291061230018219200}{44603041961445299377636723595085497057} a^{11} + \frac{20921035347200562738915407544404615255}{44603041961445299377636723595085497057} a^{10} + \frac{19649844609386988275554506451288540105}{44603041961445299377636723595085497057} a^{9} - \frac{22217166603635725417834826963050289250}{44603041961445299377636723595085497057} a^{8} + \frac{116165130777699826132661113963527438}{2347528524286594704086143347109763003} a^{7} + \frac{2916230288809771164375465217816630514}{44603041961445299377636723595085497057} a^{6} - \frac{19620138270070545894679255998645323656}{44603041961445299377636723595085497057} a^{5} + \frac{12356250225664666097241242375359460218}{44603041961445299377636723595085497057} a^{4} + \frac{2071175269314870744406502552833683542}{44603041961445299377636723595085497057} a^{3} - \frac{13875837351922149167474261714303238802}{44603041961445299377636723595085497057} a^{2} - \frac{4079655576637538151240644432112997459}{44603041961445299377636723595085497057} a - \frac{5594834403611835059493754292092921607}{44603041961445299377636723595085497057}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9986756867.7 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^2:D_4$ (as 16T225):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 32 conjugacy class representatives for $C_2^2.C_2^2:D_4$
Character table for $C_2^2.C_2^2:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 4.4.2525.1, 4.4.73225.2, 8.8.5361900625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.1$x^{8} - 203 x^{4} + 68121$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$101$101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.8.6.2$x^{8} + 505 x^{4} + 91809$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$