Normalized defining polynomial
\( x^{16} - x^{15} - 135 x^{14} + 135 x^{13} + 7481 x^{12} - 7481 x^{11} - 218823 x^{10} + 218823 x^{9} + 3610937 x^{8} - 3610937 x^{7} - 33154759 x^{6} + 33154759 x^{5} + 154016057 x^{4} - 154016057 x^{3} - 273802951 x^{2} + 273802951 x + 11409721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2441334965997239773086576105713=17^{15}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(527=17\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{527}(1,·)$, $\chi_{527}(278,·)$, $\chi_{527}(464,·)$, $\chi_{527}(280,·)$, $\chi_{527}(402,·)$, $\chi_{527}(404,·)$, $\chi_{527}(342,·)$, $\chi_{527}(216,·)$, $\chi_{527}(92,·)$, $\chi_{527}(94,·)$, $\chi_{527}(32,·)$, $\chi_{527}(497,·)$, $\chi_{527}(371,·)$, $\chi_{527}(309,·)$, $\chi_{527}(61,·)$, $\chi_{527}(373,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{16922039} a^{9} - \frac{3128542}{16922039} a^{8} - \frac{72}{16922039} a^{7} - \frac{2837780}{16922039} a^{6} + \frac{1728}{16922039} a^{5} + \frac{5989483}{16922039} a^{4} - \frac{15360}{16922039} a^{3} - \frac{7873021}{16922039} a^{2} + \frac{36864}{16922039} a + \frac{7873021}{16922039}$, $\frac{1}{16922039} a^{10} - \frac{80}{16922039} a^{8} - \frac{8106297}{16922039} a^{7} + \frac{2240}{16922039} a^{6} - \frac{2942421}{16922039} a^{5} - \frac{25600}{16922039} a^{4} - \frac{3687381}{16922039} a^{3} + \frac{102400}{16922039} a^{2} - \frac{2172515}{16922039} a - \frac{65536}{16922039}$, $\frac{1}{16922039} a^{11} - \frac{4559072}{16922039} a^{8} - \frac{3520}{16922039} a^{7} + \frac{6943725}{16922039} a^{6} + \frac{112640}{16922039} a^{5} + \frac{1654167}{16922039} a^{4} - \frac{1126400}{16922039} a^{3} - \frac{5898752}{16922039} a^{2} + \frac{2883584}{16922039} a + \frac{3726237}{16922039}$, $\frac{1}{16922039} a^{12} - \frac{4224}{16922039} a^{8} + \frac{209282}{16922039} a^{7} + \frac{157696}{16922039} a^{6} - \frac{5939591}{16922039} a^{5} - \frac{2027520}{16922039} a^{4} + \frac{7074749}{16922039} a^{3} - \frac{8271287}{16922039} a^{2} - \frac{334903}{16922039} a - \frac{5767168}{16922039}$, $\frac{1}{16922039} a^{13} + \frac{1360333}{16922039} a^{8} - \frac{146432}{16922039} a^{7} + \frac{5003340}{16922039} a^{6} + \frac{5271552}{16922039} a^{5} + \frac{8202636}{16922039} a^{4} - \frac{5463771}{16922039} a^{3} - \frac{4168972}{16922039} a^{2} - \frac{2351983}{16922039} a + \frac{3834069}{16922039}$, $\frac{1}{16922039} a^{14} - \frac{186368}{16922039} a^{8} + \frac{1415082}{16922039} a^{7} + \frac{7827456}{16922039} a^{6} - \frac{7211406}{16922039} a^{5} - \frac{5815734}{16922039} a^{4} - \frac{8172257}{16922039} a^{3} + \frac{3284988}{16922039} a^{2} - \frac{3480086}{16922039} a - \frac{5636971}{16922039}$, $\frac{1}{16922039} a^{15} + \frac{7075410}{16922039} a^{8} - \frac{5591040}{16922039} a^{7} + \frac{2812460}{16922039} a^{6} - \frac{5290571}{16922039} a^{5} - \frac{5585109}{16922039} a^{4} + \frac{497099}{16922039} a^{3} - \frac{6500202}{16922039} a^{2} - \frac{5714853}{16922039} a + \frac{3020116}{16922039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6059891910.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 31 | Data not computed | ||||||