Normalized defining polynomial
\( x^{16} - 8 x^{15} - 10 x^{14} + 210 x^{13} - 282 x^{12} - 1402 x^{11} + 3039 x^{10} + 3615 x^{9} - 10981 x^{8} - 3484 x^{7} + 18083 x^{6} - 621 x^{5} - 13448 x^{4} + 3454 x^{3} + 3503 x^{2} - 1669 x + 191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23298085122481000000000000=2^{12}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{54} a^{12} - \frac{1}{9} a^{11} + \frac{1}{54} a^{10} - \frac{2}{27} a^{9} + \frac{1}{27} a^{8} + \frac{2}{27} a^{7} + \frac{10}{27} a^{6} + \frac{13}{54} a^{5} - \frac{1}{2} a^{4} + \frac{7}{18} a^{3} - \frac{1}{3} a^{2} - \frac{7}{54} a + \frac{11}{54}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{11} + \frac{1}{27} a^{10} - \frac{2}{27} a^{9} - \frac{1}{27} a^{8} + \frac{4}{27} a^{7} + \frac{7}{54} a^{6} + \frac{5}{18} a^{5} + \frac{1}{18} a^{4} - \frac{7}{54} a^{2} + \frac{5}{54} a + \frac{2}{9}$, $\frac{1}{10314} a^{14} - \frac{7}{10314} a^{13} + \frac{1}{382} a^{12} - \frac{71}{10314} a^{11} - \frac{824}{5157} a^{10} - \frac{265}{1719} a^{9} - \frac{674}{5157} a^{8} + \frac{4123}{10314} a^{7} + \frac{59}{573} a^{6} + \frac{2017}{5157} a^{5} - \frac{481}{3438} a^{4} - \frac{1243}{10314} a^{3} - \frac{46}{573} a^{2} - \frac{1069}{10314} a + \frac{1}{27}$, $\frac{1}{13418514} a^{15} + \frac{643}{13418514} a^{14} + \frac{61628}{6709257} a^{13} + \frac{9439}{2236419} a^{12} + \frac{1560613}{13418514} a^{11} + \frac{52213}{1490946} a^{10} + \frac{79031}{745473} a^{9} + \frac{44449}{4472838} a^{8} + \frac{2158559}{6709257} a^{7} - \frac{720107}{1490946} a^{6} - \frac{1988519}{4472838} a^{5} + \frac{4974167}{13418514} a^{4} - \frac{4146503}{13418514} a^{3} + \frac{525976}{6709257} a^{2} + \frac{1117988}{2236419} a - \frac{3325}{7806}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43291466.6921 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4):C_4$ (as 16T17):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4^2:C_2$ |
| Character table for $C_4^2:C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{65}) \), 4.4.274625.1, \(\Q(\sqrt{5}, \sqrt{13})\), 4.4.274625.2, 8.8.75418890625.1, 8.8.4826809000000.1, 8.8.1142440000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||