Normalized defining polynomial
\( x^{16} - x^{15} - 101 x^{14} + 101 x^{13} + 4183 x^{12} - 4183 x^{11} - 91289 x^{10} + 91289 x^{9} + 1120471 x^{8} - 1120471 x^{7} - 7604201 x^{6} + 7604201 x^{5} + 25708183 x^{4} - 25708183 x^{3} - 31398761 x^{2} + 31398761 x - 2845289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(224159169454780289392644342833=17^{15}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(391=17\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{391}(1,·)$, $\chi_{391}(70,·)$, $\chi_{391}(208,·)$, $\chi_{391}(275,·)$, $\chi_{391}(22,·)$, $\chi_{391}(367,·)$, $\chi_{391}(93,·)$, $\chi_{391}(160,·)$, $\chi_{391}(162,·)$, $\chi_{391}(91,·)$, $\chi_{391}(45,·)$, $\chi_{391}(47,·)$, $\chi_{391}(114,·)$, $\chi_{391}(185,·)$, $\chi_{391}(252,·)$, $\chi_{391}(254,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{1609901} a^{9} - \frac{379328}{1609901} a^{8} - \frac{54}{1609901} a^{7} + \frac{498833}{1609901} a^{6} + \frac{972}{1609901} a^{5} + \frac{567010}{1609901} a^{4} - \frac{6480}{1609901} a^{3} + \frac{498154}{1609901} a^{2} + \frac{11664}{1609901} a + \frac{431335}{1609901}$, $\frac{1}{1609901} a^{10} - \frac{60}{1609901} a^{8} - \frac{666067}{1609901} a^{7} + \frac{1260}{1609901} a^{6} + \frac{606497}{1609901} a^{5} - \frac{10800}{1609901} a^{4} + \frac{771541}{1609901} a^{3} + \frac{32400}{1609901} a^{2} - \frac{704722}{1609901} a - \frac{15552}{1609901}$, $\frac{1}{1609901} a^{11} + \frac{722768}{1609901} a^{8} - \frac{1980}{1609901} a^{7} - \frac{51642}{1609901} a^{6} + \frac{47520}{1609901} a^{5} - \frac{625681}{1609901} a^{4} - \frac{356400}{1609901} a^{3} + \frac{206300}{1609901} a^{2} + \frac{684288}{1609901} a + \frac{121684}{1609901}$, $\frac{1}{1609901} a^{12} - \frac{2376}{1609901} a^{8} + \frac{340206}{1609901} a^{7} + \frac{66528}{1609901} a^{6} + \frac{370560}{1609901} a^{5} - \frac{641520}{1609901} a^{4} + \frac{540931}{1609901} a^{3} + \frac{442963}{1609901} a^{2} - \frac{802632}{1609901} a + \frac{583469}{1609901}$, $\frac{1}{1609901} a^{13} + \frac{601438}{1609901} a^{8} - \frac{61776}{1609901} a^{7} + \frac{710632}{1609901} a^{6} + \frac{58051}{1609901} a^{5} + \frac{269554}{1609901} a^{4} - \frac{464408}{1609901} a^{3} - \frac{465963}{1609901} a^{2} - \frac{681085}{1609901} a - \frac{654977}{1609901}$, $\frac{1}{1609901} a^{14} - \frac{78624}{1609901} a^{8} - \frac{619637}{1609901} a^{7} - \frac{743146}{1609901} a^{6} + \frac{65881}{1609901} a^{5} + \frac{284240}{1609901} a^{4} - \frac{718044}{1609901} a^{3} - \frac{410833}{1609901} a^{2} + \frac{120749}{1609901} a - \frac{202689}{1609901}$, $\frac{1}{1609901} a^{15} + \frac{121617}{1609901} a^{8} - \frac{159139}{1609901} a^{7} - \frac{96489}{1609901} a^{6} - \frac{568480}{1609901} a^{5} + \frac{107605}{1609901} a^{4} + \frac{444264}{1609901} a^{3} - \frac{300584}{1609901} a^{2} - \frac{775923}{1609901} a + \frac{718475}{1609901}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2165743017.62 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 23 | Data not computed | ||||||