Normalized defining polynomial
\( x^{16} - 8 x^{15} - 32 x^{14} + 352 x^{13} + 184 x^{12} - 5432 x^{11} + 2236 x^{10} + 38968 x^{9} - 32168 x^{8} - 135384 x^{7} + 149568 x^{6} + 195744 x^{5} - 285732 x^{4} - 31752 x^{3} + 158652 x^{2} - 67104 x + 8433 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22144295318673432094540038144=2^{48}\cdot 3^{12}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{897} a^{12} - \frac{25}{299} a^{11} - \frac{98}{897} a^{10} + \frac{17}{897} a^{9} + \frac{38}{299} a^{8} - \frac{100}{299} a^{7} + \frac{89}{299} a^{6} - \frac{105}{299} a^{5} + \frac{38}{897} a^{4} + \frac{147}{299} a^{3} - \frac{102}{299} a^{2} + \frac{122}{299} a - \frac{140}{299}$, $\frac{1}{897} a^{13} - \frac{14}{299} a^{11} + \frac{142}{897} a^{10} - \frac{106}{897} a^{9} - \frac{122}{897} a^{8} - \frac{107}{897} a^{7} - \frac{323}{897} a^{6} - \frac{265}{897} a^{5} - \frac{99}{299} a^{4} - \frac{140}{299} a^{3} - \frac{53}{299} a^{2} + \frac{40}{299} a - \frac{35}{299}$, $\frac{1}{897} a^{14} - \frac{6}{299} a^{11} - \frac{12}{299} a^{10} - \frac{2}{299} a^{9} - \frac{103}{897} a^{8} - \frac{365}{897} a^{7} - \frac{38}{299} a^{6} - \frac{24}{299} a^{5} - \frac{319}{897} a^{4} + \frac{141}{299} a^{3} - \frac{58}{299} a^{2} + \frac{6}{299} a + \frac{100}{299}$, $\frac{1}{88346192360654196033} a^{15} - \frac{17831086352144075}{88346192360654196033} a^{14} + \frac{1204529351801656}{3841138798289312871} a^{13} - \frac{11079253614080924}{29448730786884732011} a^{12} + \frac{6743331073348584973}{88346192360654196033} a^{11} + \frac{129164334784880306}{1210221813159646521} a^{10} - \frac{1471574486265717744}{29448730786884732011} a^{9} - \frac{4583955408623617083}{29448730786884732011} a^{8} - \frac{9419326407330949268}{29448730786884732011} a^{7} + \frac{38498344666704472925}{88346192360654196033} a^{6} + \frac{34943929691810619292}{88346192360654196033} a^{5} + \frac{44005886094005595821}{88346192360654196033} a^{4} + \frac{7580474185221335484}{29448730786884732011} a^{3} - \frac{13785563359116221353}{29448730786884732011} a^{2} + \frac{4399146585217511502}{29448730786884732011} a + \frac{13592785778276293234}{29448730786884732011}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1875974037.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4.D_4$ |
| Character table for $C_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.4.105984.1, 4.4.105984.2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.404373897216.3, 8.8.1617495588864.1, 8.8.179721732096.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |