Normalized defining polynomial
\( x^{16} - x^{15} - 107 x^{14} + 25 x^{13} + 4506 x^{12} + 1965 x^{11} - 94158 x^{10} - 95986 x^{9} + 1008688 x^{8} + 1550091 x^{7} - 5130166 x^{6} - 10614120 x^{5} + 9737766 x^{4} + 30871725 x^{3} + 2446090 x^{2} - 31380089 x - 17848727 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2165234002589380425486809479441=13^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{2}{13} a^{11} - \frac{1}{13} a^{9} - \frac{3}{13} a^{7} - \frac{1}{13} a^{6} + \frac{3}{13} a^{5} - \frac{1}{13} a^{4} + \frac{4}{13} a^{3} - \frac{4}{13} a^{2}$, $\frac{1}{13} a^{13} - \frac{4}{13} a^{11} - \frac{1}{13} a^{10} + \frac{2}{13} a^{9} - \frac{3}{13} a^{8} + \frac{5}{13} a^{7} + \frac{5}{13} a^{6} + \frac{6}{13} a^{5} + \frac{6}{13} a^{4} + \frac{1}{13} a^{3} - \frac{5}{13} a^{2}$, $\frac{1}{3705} a^{14} - \frac{56}{3705} a^{13} + \frac{7}{3705} a^{12} - \frac{704}{3705} a^{11} - \frac{492}{1235} a^{10} - \frac{776}{3705} a^{9} - \frac{73}{195} a^{8} - \frac{358}{741} a^{7} - \frac{44}{741} a^{6} + \frac{74}{195} a^{5} + \frac{1604}{3705} a^{4} - \frac{127}{1235} a^{3} - \frac{778}{3705} a^{2} + \frac{67}{285} a - \frac{124}{285}$, $\frac{1}{5563026630817922769289782613913907105} a^{15} + \frac{4399986900234628672699191313906}{5563026630817922769289782613913907105} a^{14} + \frac{26024746498236072645145615751645810}{1112605326163584553857956522782781421} a^{13} + \frac{35801422150787234807692193718942668}{1112605326163584553857956522782781421} a^{12} + \frac{763385610014631205663718057672629867}{1854342210272640923096594204637969035} a^{11} + \frac{1397912908238316107215386654226445617}{5563026630817922769289782613913907105} a^{10} - \frac{1596230899656166924714664934284921734}{5563026630817922769289782613913907105} a^{9} + \frac{63616248739533714192346062756841426}{5563026630817922769289782613913907105} a^{8} - \frac{440584192784644159011234721237859}{6583463468423577241763056347827109} a^{7} - \frac{966763896148453815937924884930498589}{5563026630817922769289782613913907105} a^{6} + \frac{220292330456259443980817640924067541}{5563026630817922769289782613913907105} a^{5} - \frac{818076660960054093288467070074395586}{1854342210272640923096594204637969035} a^{4} - \frac{25701977930535171167986813064130962}{85585025089506504142919732521752417} a^{3} - \frac{9199952987422274365000283827517251}{58558175061241292308313501199093759} a^{2} + \frac{7819308697541431875068698220295274}{85585025089506504142919732521752417} a - \frac{59998407760140530874890855379211181}{142641708482510840238199554202920695}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15423219542.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{793}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{61})\), 4.4.48373.1 x2, 4.4.10309.1 x2, 8.8.395451064801.1, 8.8.113190262471117.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $61$ | 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |