Normalized defining polynomial
\( x^{16} - 1336 x^{14} + 723214 x^{12} - 202880976 x^{10} + 31228142425 x^{8} - 2556746204384 x^{6} + 97478917371936 x^{4} - 1157359870269768 x^{2} + 4107750751677169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(215429589500286246610837301474983006961664=2^{48}\cdot 3^{8}\cdot 73^{6}\cdot 937^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $383.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73, 937$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{937} a^{10} - \frac{399}{937} a^{8} - \frac{150}{937} a^{6} + \frac{138}{937} a^{4} + \frac{384}{937} a^{2}$, $\frac{1}{937} a^{11} - \frac{399}{937} a^{9} - \frac{150}{937} a^{7} + \frac{138}{937} a^{5} + \frac{384}{937} a^{3}$, $\frac{1}{64091737} a^{12} - \frac{1336}{64091737} a^{10} + \frac{723214}{64091737} a^{8} - \frac{10605765}{64091737} a^{6} + \frac{15466506}{64091737} a^{4} + \frac{20}{937} a^{2}$, $\frac{1}{64091737} a^{13} - \frac{1336}{64091737} a^{11} + \frac{723214}{64091737} a^{9} - \frac{10605765}{64091737} a^{7} + \frac{15466506}{64091737} a^{5} + \frac{20}{937} a^{3}$, $\frac{1}{77763187430904769466652694949312300875367} a^{14} - \frac{392234003233877632584865347351991}{77763187430904769466652694949312300875367} a^{12} + \frac{23707667907810780322999920713362948567}{77763187430904769466652694949312300875367} a^{10} + \frac{12751089094940710689037420418924439105318}{77763187430904769466652694949312300875367} a^{8} - \frac{21926292681204710686814392685847042808295}{77763187430904769466652694949312300875367} a^{6} - \frac{7706184873460900658172917367384487226}{82991662146109679260034893222318357391} a^{4} - \frac{48399741479450491011122178928509}{1213310655489096347422331445772991} a^{2} + \frac{53649703262230082639546094878}{1294888639796260776331196847143}$, $\frac{1}{77763187430904769466652694949312300875367} a^{15} - \frac{392234003233877632584865347351991}{77763187430904769466652694949312300875367} a^{13} + \frac{23707667907810780322999920713362948567}{77763187430904769466652694949312300875367} a^{11} + \frac{12751089094940710689037420418924439105318}{77763187430904769466652694949312300875367} a^{9} - \frac{21926292681204710686814392685847042808295}{77763187430904769466652694949312300875367} a^{7} - \frac{7706184873460900658172917367384487226}{82991662146109679260034893222318357391} a^{5} - \frac{48399741479450491011122178928509}{1213310655489096347422331445772991} a^{3} + \frac{53649703262230082639546094878}{1294888639796260776331196847143} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2281811762510000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1191 are not computed |
| Character table for t16n1191 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.10512.1, 8.8.28288548864.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.8.6.1 | $x^{8} - 14527 x^{4} + 78021889$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 937 | Data not computed | ||||||