Normalized defining polynomial
\( x^{16} - 1016 x^{14} + 425702 x^{12} - 95045720 x^{10} + 12182297082 x^{8} - 897484048920 x^{6} + 35801259737778 x^{4} - 666358713185624 x^{2} + 4107750751677169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(215429589500286246610837301474983006961664=2^{48}\cdot 3^{8}\cdot 73^{6}\cdot 937^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $383.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73, 937$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{1874} a^{10} - \frac{79}{1874} a^{8} + \frac{152}{937} a^{6} - \frac{94}{937} a^{4} - \frac{663}{1874} a^{2} - \frac{1}{2}$, $\frac{1}{1874} a^{11} - \frac{79}{1874} a^{9} + \frac{152}{937} a^{7} - \frac{94}{937} a^{5} - \frac{663}{1874} a^{3} - \frac{1}{2} a$, $\frac{1}{128183474} a^{12} - \frac{508}{64091737} a^{10} + \frac{212851}{64091737} a^{8} + \frac{16568877}{64091737} a^{6} - \frac{59224685}{128183474} a^{4} + \frac{414}{937} a^{2}$, $\frac{1}{128183474} a^{13} - \frac{508}{64091737} a^{11} + \frac{212851}{64091737} a^{9} + \frac{16568877}{64091737} a^{7} - \frac{59224685}{128183474} a^{5} + \frac{414}{937} a^{3}$, $\frac{1}{2237178377048783455672401631111948702} a^{14} + \frac{713176043393317798156050340}{1118589188524391727836200815555974351} a^{12} + \frac{281624811321928061621695536823621}{1118589188524391727836200815555974351} a^{10} - \frac{93636034687509945947925902501477754}{1118589188524391727836200815555974351} a^{8} - \frac{262921193721844031188482828872341349}{2237178377048783455672401631111948702} a^{6} - \frac{457283023699816525239317313317263}{1193798493622616571863608127594423} a^{4} + \frac{136537155067750604931627020}{17452939191278147568947941223} a^{2} - \frac{3297896462021213710965621}{18626402552057788227265679}$, $\frac{1}{2237178377048783455672401631111948702} a^{15} + \frac{713176043393317798156050340}{1118589188524391727836200815555974351} a^{13} + \frac{281624811321928061621695536823621}{1118589188524391727836200815555974351} a^{11} - \frac{93636034687509945947925902501477754}{1118589188524391727836200815555974351} a^{9} - \frac{262921193721844031188482828872341349}{2237178377048783455672401631111948702} a^{7} - \frac{457283023699816525239317313317263}{1193798493622616571863608127594423} a^{5} + \frac{136537155067750604931627020}{17452939191278147568947941223} a^{3} - \frac{3297896462021213710965621}{18626402552057788227265679} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2488658750900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1189 are not computed |
| Character table for t16n1189 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.10512.1, 8.8.28288548864.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.8.6.1 | $x^{8} - 14527 x^{4} + 78021889$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 937 | Data not computed | ||||||