Normalized defining polynomial
\( x^{16} - 4 x^{15} - 1584 x^{14} + 6976 x^{13} + 968618 x^{12} - 4501752 x^{11} - 291746664 x^{10} + 1378342360 x^{9} + 46041170792 x^{8} - 211911186816 x^{7} - 3734495952480 x^{6} + 15875325749312 x^{5} + 142907859799296 x^{4} - 518503792322688 x^{3} - 2292621554536112 x^{2} + 5400237968704032 x + 12924181690872944 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(214070583463493396843509212774400000000=2^{32}\cdot 5^{8}\cdot 13^{6}\cdot 41^{4}\cdot 311^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $248.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 41, 311$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{32184783017053472737977800426684053845444471190649713274962133434058601757523148593425048182368021398696} a^{15} - \frac{1587793900266541604917609664538703046553891640491124792349744569316287520270442881986953500817196311113}{32184783017053472737977800426684053845444471190649713274962133434058601757523148593425048182368021398696} a^{14} - \frac{606755465998478615327230122814511275127773786594641283677246397063409327069287418314512911966620100447}{32184783017053472737977800426684053845444471190649713274962133434058601757523148593425048182368021398696} a^{13} - \frac{53375604372507249715805526147277079246963657721226213159650459040277299693409967750987527837359667015}{8046195754263368184494450106671013461361117797662428318740533358514650439380787148356262045592005349674} a^{12} + \frac{1604648116924833009172570124435189873781939319105430208395616440220001825705362553396674023677429129147}{16092391508526736368988900213342026922722235595324856637481066717029300878761574296712524091184010699348} a^{11} + \frac{1880693381819284682782876630806036622256446093573342001242808774980338871604642009673491569389458784115}{16092391508526736368988900213342026922722235595324856637481066717029300878761574296712524091184010699348} a^{10} + \frac{483583144790926038837240670105207437693791761984789192123067449623510061859025730816097358249877362299}{8046195754263368184494450106671013461361117797662428318740533358514650439380787148356262045592005349674} a^{9} - \frac{85690063167127520314431157107680599408843962975036224493403021650091894894722799364949620245455264299}{16092391508526736368988900213342026922722235595324856637481066717029300878761574296712524091184010699348} a^{8} + \frac{701223355076217880601991544234224463964294579450655599292919196119147567867656152384229240933557627594}{4023097877131684092247225053335506730680558898831214159370266679257325219690393574178131022796002674837} a^{7} + \frac{152091003867722891994670389942442316336696421437189634499124315125627356201054794038824791900482253945}{8046195754263368184494450106671013461361117797662428318740533358514650439380787148356262045592005349674} a^{6} - \frac{1156699650949095871222176492288286319242498371058648482901716376135756630112972726097455150399594049801}{8046195754263368184494450106671013461361117797662428318740533358514650439380787148356262045592005349674} a^{5} + \frac{331642705673850191406072699440419129113482055490341904085987597932140121910892743312516104854343806715}{4023097877131684092247225053335506730680558898831214159370266679257325219690393574178131022796002674837} a^{4} + \frac{1476797794592092814066652388147015178333172462946727079705840796484190142039968797461879771498458845126}{4023097877131684092247225053335506730680558898831214159370266679257325219690393574178131022796002674837} a^{3} - \frac{1067382358791808044292024279863106430778538936116212618160373886719984036353208464373866101863645511530}{4023097877131684092247225053335506730680558898831214159370266679257325219690393574178131022796002674837} a^{2} - \frac{486108335752790751947191402609578409428617857739002870780720067532982226652667935242237873704742617659}{4023097877131684092247225053335506730680558898831214159370266679257325219690393574178131022796002674837} a - \frac{1773268328627738951119202260521417432737636316840399946793731101113480503172869735219713391933369410534}{4023097877131684092247225053335506730680558898831214159370266679257325219690393574178131022796002674837}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43404899056800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).C_2^4$ (as 16T205):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $(C_2\times C_4).C_2^4$ |
| Character table for $(C_2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.432640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 13.8.6.3 | $x^{8} + 65 x^{4} + 1352$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 311 | Data not computed | ||||||