Normalized defining polynomial
\( x^{16} - 528 x^{14} + 111432 x^{12} - 11929632 x^{10} + 679356150 x^{8} - 19886429376 x^{6} + 276139463688 x^{4} - 1472465388240 x^{2} + 838779390801 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(209011791362878677931936734396700164096=2^{58}\cdot 3^{14}\cdot 11^{8}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $248.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{66} a^{8} + \frac{4}{11} a^{4} - \frac{1}{2}$, $\frac{1}{66} a^{9} + \frac{4}{11} a^{5} - \frac{1}{2} a$, $\frac{1}{21054} a^{10} + \frac{5}{957} a^{8} + \frac{1735}{7018} a^{6} - \frac{251}{638} a^{4} + \frac{73}{319} a^{2} - \frac{1}{2}$, $\frac{1}{126324} a^{11} - \frac{1}{42108} a^{10} + \frac{13}{3828} a^{9} + \frac{19}{3828} a^{8} - \frac{2198}{10527} a^{7} + \frac{887}{7018} a^{6} - \frac{244}{957} a^{5} - \frac{237}{638} a^{4} - \frac{173}{3828} a^{3} - \frac{465}{1276} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{18316980} a^{12} - \frac{59}{3052830} a^{10} - \frac{2649}{407044} a^{8} + \frac{604937}{3052830} a^{6} - \frac{23569}{50460} a^{4} - \frac{59}{1595} a^{2} - \frac{1}{20}$, $\frac{1}{18316980} a^{13} - \frac{16}{4579245} a^{11} + \frac{347}{1221132} a^{9} - \frac{223301}{1017610} a^{7} + \frac{12761}{555060} a^{5} - \frac{1219}{9570} a^{3} + \frac{9}{20} a$, $\frac{1}{512244865042796241191786940} a^{14} + \frac{12592136944807996}{1293547638996960205029765} a^{12} + \frac{597225358917815878157}{34149657669519749412785796} a^{10} - \frac{16463079195065293542083}{7761285833981761230178590} a^{8} - \frac{3659685087010137953848769}{15522571667963522460357180} a^{6} - \frac{488113172749041477963}{1351669424239247863145} a^{4} + \frac{84467911341074004303}{186437161964034188020} a^{2} + \frac{23959495477088737}{58444251399383758}$, $\frac{1}{512244865042796241191786940} a^{15} + \frac{12592136944807996}{1293547638996960205029765} a^{13} + \frac{18852529740705577633}{11383219223173249804261932} a^{11} + \frac{48417053168418603888877}{7761285833981761230178590} a^{9} + \frac{2822429955487025980389871}{15522571667963522460357180} a^{7} - \frac{1977041713648218450944}{4055008272717743589435} a^{5} - \frac{255353474408413600481}{559311485892102564060} a^{3} + \frac{23959495477088737}{58444251399383758} a$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53926036048600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times D_4).C_2^3$ (as 16T600):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$ |
| Character table for $(C_2^2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.76032.1, 4.4.13824.1, 4.4.50688.2, 8.8.369975361536.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |