Normalized defining polynomial
\( x^{16} - 40 x^{14} - 16 x^{13} + 562 x^{12} + 328 x^{11} - 3536 x^{10} - 2112 x^{9} + 10754 x^{8} + 5808 x^{7} - 15272 x^{6} - 7872 x^{5} + 9012 x^{4} + 4704 x^{3} - 1408 x^{2} - 768 x - 32 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202486647379893148425650176=2^{48}\cdot 449^{2}\cdot 1889^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{56} a^{14} + \frac{1}{28} a^{13} - \frac{1}{14} a^{12} + \frac{3}{14} a^{11} + \frac{5}{28} a^{10} + \frac{1}{14} a^{9} + \frac{3}{14} a^{8} - \frac{3}{28} a^{6} - \frac{1}{2} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} - \frac{5}{14} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{2256010344055176464} a^{15} - \frac{187089683583813}{161143596003941176} a^{14} + \frac{12294767823228217}{564002586013794116} a^{13} - \frac{15558662333064797}{564002586013794116} a^{12} + \frac{12548803238453915}{161143596003941176} a^{11} - \frac{131012815059514007}{564002586013794116} a^{10} - \frac{29000770399010849}{141000646503448529} a^{9} - \frac{35221124670484863}{141000646503448529} a^{8} + \frac{16102871430170137}{1128005172027588232} a^{7} - \frac{153490642210247255}{564002586013794116} a^{6} - \frac{24608624713271407}{141000646503448529} a^{5} - \frac{124653995332977695}{282001293006897058} a^{4} - \frac{119134064941915795}{564002586013794116} a^{3} + \frac{84023168314949875}{282001293006897058} a^{2} + \frac{20884432365258600}{141000646503448529} a - \frac{68246010453148984}{141000646503448529}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 512753317.509 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 116 conjugacy class representatives for t16n1720 are not computed |
| Character table for t16n1720 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.8.26.8 | $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||