Normalized defining polynomial
\( x^{16} - 1236 x^{14} - 136 x^{13} + 568104 x^{12} + 111336 x^{11} - 124399308 x^{10} - 46989984 x^{9} + 14186331356 x^{8} + 8204441920 x^{7} - 844541825988 x^{6} - 576556296440 x^{5} + 24403328720004 x^{4} + 13466549733144 x^{3} - 298573308211004 x^{2} - 106821264489440 x + 1048645407290447 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2020123727657308174489736833620393728206176256=2^{50}\cdot 17^{4}\cdot 16673^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $678.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 16673$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{16} a^{8} + \frac{1}{4} a^{6} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{5}{16}$, $\frac{1}{16} a^{13} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{16} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{16} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{5}{16} a - \frac{1}{4}$, $\frac{1}{16} a^{14} - \frac{1}{4} a^{11} - \frac{3}{16} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{7}{16} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{7}{16} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{15} - \frac{882009095761150882408651650836153026959753248617948129847094696666115964217514917138103201023}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{14} + \frac{84451525134853942407254512207786376212364817867300869409792996282799026688929075590253683441}{7486552740716778594841384038085517972808282605966034792667116661776837791324212840550307304928} a^{13} - \frac{532035562345933924338905802270683123937044140453539020853082825876118881084216221922466050601}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{12} - \frac{12741950145559858555919541144891590381491736800490701960470605476286081072525317395853998245381}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{11} + \frac{1000846161239917148023723944973073437500695564244973021494802909849408758895336686460491578717}{7486552740716778594841384038085517972808282605966034792667116661776837791324212840550307304928} a^{10} + \frac{6985248535932589358145961860052304713656558671875985625353961632096963814905183554411459057769}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{9} - \frac{5602798007776393654012998950403115914909660005553066762161083859863788833519741675592885256071}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{8} - \frac{1875286478626515434845487510892929722438595504954680225157685988118219349430087594070458715405}{7486552740716778594841384038085517972808282605966034792667116661776837791324212840550307304928} a^{7} - \frac{6188233242422826452660379125018925314220642395487058386799429151642898456737302667533925871867}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{6} + \frac{362155645818349313438542395485297249135944755677785940343251850808833709883395288051630027445}{1690511909194111295609344782793504058376063814250394953182897310723802081911919028511359714016} a^{5} - \frac{808184658513165750384514112041184230661277754436192410380685099825290798939550923478651941907}{7486552740716778594841384038085517972808282605966034792667116661776837791324212840550307304928} a^{4} + \frac{10589291676607174805299952240735560708776612329725542069377850544238487506412074036191107723299}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{3} + \frac{10296132852985172320546822584574169202200529028951482948022804022823684138620312990443716177315}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a^{2} - \frac{5439595402697356503956074216832916728089276877147255767623645548376465730354379347075497721991}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496} a + \frac{12410513394065529491443984313406900660992712584780544013628042442378631757491672443818396977865}{52405869185017450163889688266598625809657978241762243548669816632437864539269489883852151134496}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 707642643960000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.1067072.2, 4.4.34146304.1, 8.8.1165970076860416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 16673 | Data not computed | ||||||