Normalized defining polynomial
\( x^{16} - 3 x^{15} - 2612 x^{14} + 7614 x^{13} + 2419205 x^{12} - 6535626 x^{11} - 935790958 x^{10} + 2176523968 x^{9} + 134048526390 x^{8} - 227735489612 x^{7} - 5858782940122 x^{6} + 18413561633240 x^{5} + 51593522344722 x^{4} - 277710740400021 x^{3} + 323798927354430 x^{2} - 54447078181100 x - 1273986283439 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(193851685179255766530952003996759265201819225743449601=37^{14}\cdot 173^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2140.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{8}{41} a^{11} + \frac{17}{41} a^{10} - \frac{3}{41} a^{9} + \frac{4}{41} a^{7} - \frac{3}{41} a^{6} - \frac{7}{41} a^{5} - \frac{13}{41} a^{4} - \frac{12}{41} a^{3} - \frac{11}{41} a^{2} - \frac{4}{41} a - \frac{3}{41}$, $\frac{1}{41} a^{13} - \frac{6}{41} a^{11} + \frac{10}{41} a^{10} + \frac{17}{41} a^{9} + \frac{4}{41} a^{8} - \frac{12}{41} a^{7} + \frac{10}{41} a^{6} + \frac{13}{41} a^{5} + \frac{7}{41} a^{4} + \frac{16}{41} a^{3} - \frac{10}{41} a^{2} + \frac{6}{41} a + \frac{17}{41}$, $\frac{1}{41} a^{14} + \frac{3}{41} a^{11} - \frac{4}{41} a^{10} - \frac{14}{41} a^{9} - \frac{12}{41} a^{8} - \frac{7}{41} a^{7} - \frac{5}{41} a^{6} + \frac{6}{41} a^{5} + \frac{20}{41} a^{4} - \frac{19}{41} a^{2} - \frac{7}{41} a - \frac{18}{41}$, $\frac{1}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{15} - \frac{20522656863293387712150341809604044444699407323404762561424912696021499818818235319656787164145948613099}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{14} + \frac{88211989779785773483240099319176559696078240763941959417602228804680392158496960054034207727073649473820}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{13} - \frac{96157520796397839255971920590619662374155837506218451799230723872090676448994782465189309102321909009959}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{12} - \frac{467590791928301301007004517573665141391130634773438997983528894526203705495120690692176291140652426083823}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{11} + \frac{4140348652102173662144246276998529738235114541798164549106731337491728564352671055545037401517744934296995}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{10} + \frac{969391529689985474352425500719504963031436835417554571317145502205596884412218691511992602449378573396999}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{9} + \frac{24048508390412615510335172647775316519677640451549093263856316910470060693338898937849288682806936244432}{186531484615780142295760935922292834710857407792054359499105598189366461809338432235264957700267856183317} a^{8} - \frac{663407026595397342872893325689377239684846699228920703612385137266608382443048283690633184779455770202053}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{7} - \frac{1758761004188786448324012294939347612279503889574946840492578830046921652990892554355190873944033508004508}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{6} - \frac{192770165551767322842244799658119939336315519520185214515325207003081377553317832876329050785663387548197}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{5} - \frac{3903917116910769464890852511660938863612061730092973127242019419812387064299428758079708593667233564339494}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{4} + \frac{4150951644701564160404186053456089128118761377139781568894347579485236305872643247349705535544131647397507}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{3} + \frac{3261857919911167894701964866537714770589976737123041800258344544978873501719790843410712282387360996109281}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a^{2} + \frac{3790564516430708975907049181612746817387115071303945170759331704835200719769476696374224048591913399955248}{8766979776941666687900763988347763231410298166226554896457963114900223705038906315057453011912589240615899} a + \frac{42621487026335327829553632051835848514424997696072736476527530123257869869488739873815539248064022598673}{186531484615780142295760935922292834710857407792054359499105598189366461809338432235264957700267856183317}$
Class group and class number
$C_{3}\times C_{3}\times C_{6}$, which has order $54$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86450372936600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{173}) \), \(\Q(\sqrt{6401}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{37}, \sqrt{173})\), 8.8.68783926416507494438401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $173$ | 173.8.7.2 | $x^{8} - 692$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 173.8.7.2 | $x^{8} - 692$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |