Normalized defining polynomial
\( x^{16} - 56 x^{14} - 8 x^{13} + 1112 x^{12} + 192 x^{11} - 9332 x^{10} - 480 x^{9} + 32762 x^{8} - 4256 x^{7} - 49944 x^{6} + 11984 x^{5} + 32828 x^{4} - 7888 x^{3} - 9384 x^{2} + 1392 x + 1028 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19177071869085684350631018496=2^{48}\cdot 13^{8}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{102} a^{13} + \frac{2}{51} a^{12} + \frac{1}{6} a^{11} - \frac{5}{34} a^{10} + \frac{5}{51} a^{9} + \frac{23}{102} a^{8} - \frac{14}{51} a^{7} - \frac{25}{51} a^{6} + \frac{5}{51} a^{5} - \frac{22}{51} a^{4} - \frac{13}{51} a^{3} - \frac{8}{51} a^{2} - \frac{14}{51} a - \frac{7}{51}$, $\frac{1}{102} a^{14} + \frac{1}{102} a^{12} + \frac{19}{102} a^{11} + \frac{19}{102} a^{10} - \frac{1}{6} a^{9} - \frac{3}{17} a^{8} - \frac{20}{51} a^{7} + \frac{1}{17} a^{6} + \frac{3}{17} a^{5} + \frac{8}{17} a^{4} - \frac{7}{51} a^{3} + \frac{6}{17} a^{2} - \frac{2}{51} a - \frac{23}{51}$, $\frac{1}{19587458546277627558} a^{15} + \frac{12494961993763569}{6529152848759209186} a^{14} - \frac{20262385325306827}{9793729273138813779} a^{13} - \frac{28610618663462215}{399744051964849542} a^{12} + \frac{882432878155640205}{6529152848759209186} a^{11} - \frac{1637708180159243114}{9793729273138813779} a^{10} - \frac{1722852430700774404}{9793729273138813779} a^{9} - \frac{1806063664662073192}{9793729273138813779} a^{8} - \frac{1377641119119436021}{9793729273138813779} a^{7} + \frac{1249519937426085991}{3264576424379604593} a^{6} + \frac{98359070933254700}{1399104181876973397} a^{5} + \frac{189606944589071134}{466368060625657799} a^{4} + \frac{555887188434330013}{3264576424379604593} a^{3} + \frac{4690467197231306}{25705326176217359} a^{2} - \frac{664971360249878429}{9793729273138813779} a - \frac{940335302992596206}{9793729273138813779}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1348718265.85 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{26}) \), 4.4.346112.1, \(\Q(\zeta_{16})^+\), \(\Q(\sqrt{2}, \sqrt{13})\), 8.8.119793516544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |