Normalized defining polynomial
\( x^{16} - 2 x^{15} - 222 x^{14} + 280 x^{13} + 19715 x^{12} - 9928 x^{11} - 893566 x^{10} - 209430 x^{9} + 21657774 x^{8} + 19815150 x^{7} - 265146654 x^{6} - 400976426 x^{5} + 1348808820 x^{4} + 2801999050 x^{3} - 1606936638 x^{2} - 6158326384 x - 3244799399 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18682108719227553550336000000000000=2^{24}\cdot 5^{12}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{57} a^{14} + \frac{1}{57} a^{13} + \frac{2}{57} a^{12} + \frac{13}{57} a^{11} - \frac{20}{57} a^{10} - \frac{28}{57} a^{9} + \frac{1}{19} a^{8} - \frac{16}{57} a^{7} - \frac{5}{19} a^{6} + \frac{22}{57} a^{5} - \frac{1}{57} a^{4} + \frac{2}{19} a^{3} - \frac{5}{19} a^{2} - \frac{26}{57} a + \frac{17}{57}$, $\frac{1}{3938063342865992917030595044554014344791797192967498778897047} a^{15} + \frac{2674515061210766149232590084791322073625748335020273077675}{3938063342865992917030595044554014344791797192967498778897047} a^{14} - \frac{169584378375205430962038636192969456101324359215268407710740}{1312687780955330972343531681518004781597265730989166259632349} a^{13} - \frac{345780407725250753728810466567947070448172105013837388930325}{3938063342865992917030595044554014344791797192967498778897047} a^{12} - \frac{1852786252851225334746491119763525672099070052684988920114000}{3938063342865992917030595044554014344791797192967498778897047} a^{11} - \frac{1932239529321860643912075358152624089306242635659562686953154}{3938063342865992917030595044554014344791797192967498778897047} a^{10} - \frac{378391029300058845071996395253457998682324367764722312431385}{3938063342865992917030595044554014344791797192967498778897047} a^{9} + \frac{631610425094173011665741054979218536184450031624552297618164}{3938063342865992917030595044554014344791797192967498778897047} a^{8} + \frac{194523601893916362402725175382362825033204278612393662861611}{1312687780955330972343531681518004781597265730989166259632349} a^{7} + \frac{179857434157340376423562141396500011694042897560493037682392}{1312687780955330972343531681518004781597265730989166259632349} a^{6} - \frac{1094659406361822119127814319265475356822720057397831110140224}{3938063342865992917030595044554014344791797192967498778897047} a^{5} - \frac{731103035955130622541047619122778999442908803913500198662972}{3938063342865992917030595044554014344791797192967498778897047} a^{4} + \frac{211600770766117217991199057141389286400638745936397946821159}{1312687780955330972343531681518004781597265730989166259632349} a^{3} + \frac{169302746503203112811297640967986973679046477021626304497648}{1312687780955330972343531681518004781597265730989166259632349} a^{2} + \frac{1155289200892302412319839480307828153851836689063497248413359}{3938063342865992917030595044554014344791797192967498778897047} a + \frac{1453969975992512213054315316331745695337497842199770836033173}{3938063342865992917030595044554014344791797192967498778897047}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 923511289130 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n864 |
| Character table for t16n864 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |