Normalized defining polynomial
\( x^{16} - 2 x^{15} - 175 x^{14} + 390 x^{13} + 11610 x^{12} - 27226 x^{11} - 373958 x^{10} + 908910 x^{9} + 6121920 x^{8} - 15713660 x^{7} - 47466883 x^{6} + 136830436 x^{5} + 129284605 x^{4} - 511487750 x^{3} + 82576530 x^{2} + 487879612 x - 248412799 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1824424679612065776400000000000000=2^{16}\cdot 5^{14}\cdot 61^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{24341025351390055866503828006634668808472171687505525} a^{15} - \frac{41355006704685686992356647987879435419172487311026}{973641014055602234660153120265386752338886867500221} a^{14} + \frac{352366099493815891327617510352783028019049115376219}{4868205070278011173300765601326933761694434337501105} a^{13} - \frac{245555512858830834147701958233076612662152150493832}{4868205070278011173300765601326933761694434337501105} a^{12} + \frac{283817769432588010281339899322474355297115283800716}{4868205070278011173300765601326933761694434337501105} a^{11} + \frac{1744506570660420704153934853000674769033035642795924}{24341025351390055866503828006634668808472171687505525} a^{10} + \frac{319419286629697860546065858058813200091412700962949}{4868205070278011173300765601326933761694434337501105} a^{9} + \frac{422675278599853227569305120132780943435268605251967}{4868205070278011173300765601326933761694434337501105} a^{8} - \frac{434861167866406753234903500446976857520558015594602}{973641014055602234660153120265386752338886867500221} a^{7} + \frac{204361496185818633899350938544043801520086593979239}{4868205070278011173300765601326933761694434337501105} a^{6} - \frac{4018193262156342877681166733571460027610437946971968}{24341025351390055866503828006634668808472171687505525} a^{5} - \frac{995932163392615087214200697699125719297709873075828}{4868205070278011173300765601326933761694434337501105} a^{4} + \frac{1595732570516461520680209571606172602185553361496}{973641014055602234660153120265386752338886867500221} a^{3} - \frac{1866617078376083851778410127200311992313902288421837}{4868205070278011173300765601326933761694434337501105} a^{2} + \frac{2302015452307003335389271218146189844923964788100638}{4868205070278011173300765601326933761694434337501105} a - \frac{4643170262523610999570218212078673617713196400210943}{24341025351390055866503828006634668808472171687505525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246678315227 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.14884000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |