Normalized defining polynomial
\( x^{16} - 3 x^{15} - 59 x^{14} + 177 x^{13} + 1203 x^{12} - 3371 x^{11} - 11052 x^{10} + 25557 x^{9} + 53804 x^{8} - 84215 x^{7} - 137046 x^{6} + 109014 x^{5} + 148448 x^{4} - 32074 x^{3} - 32876 x^{2} - 4698 x - 67 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(179594836941784276350012113=17^{15}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{67} a^{13} - \frac{5}{67} a^{12} + \frac{33}{67} a^{11} + \frac{14}{67} a^{10} - \frac{29}{67} a^{9} - \frac{10}{67} a^{8} + \frac{17}{67} a^{7} + \frac{15}{67} a^{6} - \frac{21}{67} a^{5} + \frac{31}{67} a^{4} - \frac{1}{67} a^{3} - \frac{4}{67} a^{2} + \frac{24}{67} a$, $\frac{1}{67} a^{14} + \frac{8}{67} a^{12} - \frac{22}{67} a^{11} - \frac{26}{67} a^{10} - \frac{21}{67} a^{9} - \frac{33}{67} a^{8} + \frac{33}{67} a^{7} - \frac{13}{67} a^{6} - \frac{7}{67} a^{5} + \frac{20}{67} a^{4} - \frac{9}{67} a^{3} + \frac{4}{67} a^{2} - \frac{14}{67} a$, $\frac{1}{16529681543978371585987202239} a^{15} - \frac{105584950941387831643068685}{16529681543978371585987202239} a^{14} + \frac{54920849472778948993354107}{16529681543978371585987202239} a^{13} + \frac{1863555253709387484093466137}{16529681543978371585987202239} a^{12} + \frac{3780521972495617398828012336}{16529681543978371585987202239} a^{11} - \frac{6676124600565621848527478965}{16529681543978371585987202239} a^{10} - \frac{8058283812787967485022177865}{16529681543978371585987202239} a^{9} + \frac{3540217780520032372332905042}{16529681543978371585987202239} a^{8} - \frac{1177885760423882371412638343}{16529681543978371585987202239} a^{7} - \frac{6153682512348614214897494907}{16529681543978371585987202239} a^{6} - \frac{1450045851492115511059076687}{16529681543978371585987202239} a^{5} + \frac{6381162574421113005849211686}{16529681543978371585987202239} a^{4} + \frac{3744039332865653523908140270}{16529681543978371585987202239} a^{3} + \frac{1264974038102167884094621249}{16529681543978371585987202239} a^{2} - \frac{923823844458563618277222993}{16529681543978371585987202239} a - \frac{107733437102736885846397888}{246711664835498083372943317}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73340696.5653 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |