Properties

Label 16.16.1795856326...0625.1
Degree $16$
Signature $[16, 0]$
Discriminant $3^{12}\cdot 5^{12}\cdot 7^{12}$
Root discriminant $32.80$
Ramified primes $3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4:C_4$ (as 16T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1424, 3456, 7192, -12782, -12353, 19146, 9442, -14796, -3110, 6206, 169, -1367, 122, 142, -23, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - 23*x^14 + 142*x^13 + 122*x^12 - 1367*x^11 + 169*x^10 + 6206*x^9 - 3110*x^8 - 14796*x^7 + 9442*x^6 + 19146*x^5 - 12353*x^4 - 12782*x^3 + 7192*x^2 + 3456*x - 1424)
 
gp: K = bnfinit(x^16 - 5*x^15 - 23*x^14 + 142*x^13 + 122*x^12 - 1367*x^11 + 169*x^10 + 6206*x^9 - 3110*x^8 - 14796*x^7 + 9442*x^6 + 19146*x^5 - 12353*x^4 - 12782*x^3 + 7192*x^2 + 3456*x - 1424, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} - 23 x^{14} + 142 x^{13} + 122 x^{12} - 1367 x^{11} + 169 x^{10} + 6206 x^{9} - 3110 x^{8} - 14796 x^{7} + 9442 x^{6} + 19146 x^{5} - 12353 x^{4} - 12782 x^{3} + 7192 x^{2} + 3456 x - 1424 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1795856326022129150390625=3^{12}\cdot 5^{12}\cdot 7^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} + \frac{3}{8} a^{8} - \frac{3}{8} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{1568127799606072} a^{15} - \frac{539533214061}{392031949901518} a^{14} - \frac{126213980135897}{1568127799606072} a^{13} - \frac{2494490231357}{1568127799606072} a^{12} - \frac{108015276289281}{1568127799606072} a^{11} + \frac{16889526758361}{392031949901518} a^{10} - \frac{430328648902495}{1568127799606072} a^{9} - \frac{364956980736999}{1568127799606072} a^{8} + \frac{176617019538189}{1568127799606072} a^{7} - \frac{228142499505659}{1568127799606072} a^{6} + \frac{780237024327171}{1568127799606072} a^{5} - \frac{513791931475003}{1568127799606072} a^{4} - \frac{18412842013501}{196015974950759} a^{3} - \frac{287018924802813}{784063899803036} a^{2} + \frac{140814115973819}{392031949901518} a - \frac{990119626697}{196015974950759}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7752916.72291 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4:C_4$ (as 16T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 10 conjugacy class representatives for $C_4:C_4$
Character table for $C_4:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{5}, \sqrt{21})\), 4.4.231525.1 x2, 4.4.46305.1 x2, 4.4.6125.1, \(\Q(\zeta_{15})^+\), 8.8.53603825625.1, 8.8.3038765625.1, 8.8.1340095640625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ R R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
7Data not computed