Normalized defining polynomial
\( x^{16} - 4 x^{15} - 224 x^{14} + 876 x^{13} + 19944 x^{12} - 77544 x^{11} - 891496 x^{10} + 3540612 x^{9} + 20530069 x^{8} - 87322848 x^{7} - 214623836 x^{6} + 1089455540 x^{5} + 509655902 x^{4} - 5441325612 x^{3} + 2787323020 x^{2} + 6665735720 x - 5487281519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(177691244381492740096000000000000=2^{44}\cdot 5^{12}\cdot 11^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{825} a^{14} + \frac{47}{825} a^{12} + \frac{404}{825} a^{11} + \frac{307}{825} a^{10} + \frac{1}{275} a^{9} + \frac{16}{275} a^{8} + \frac{74}{275} a^{7} - \frac{37}{165} a^{6} + \frac{124}{825} a^{5} + \frac{7}{55} a^{4} + \frac{3}{275} a^{3} - \frac{112}{825} a^{2} + \frac{179}{825} a - \frac{136}{825}$, $\frac{1}{42986354551601912069219882539477203904601618893911791932425} a^{15} + \frac{11208526936615898818803364818621786040916932468910840392}{42986354551601912069219882539477203904601618893911791932425} a^{14} + \frac{942071569926452140461976860570991872749055038515151471222}{42986354551601912069219882539477203904601618893911791932425} a^{13} + \frac{2423376471406559896865509487475986476996067150927978613778}{42986354551601912069219882539477203904601618893911791932425} a^{12} - \frac{142380805318279843043073185654536061507980898502082013813}{573151394021358827589598433859696052061354918585490559099} a^{11} - \frac{5017481223099686367564714765846924402588821557642975507778}{42986354551601912069219882539477203904601618893911791932425} a^{10} - \frac{2241212507094030278522196885910831884486608104585171195042}{14328784850533970689739960846492401301533872964637263977475} a^{9} + \frac{7028870727698493712158320498294545612706171680612906877821}{14328784850533970689739960846492401301533872964637263977475} a^{8} + \frac{19313082545494538228062414123988784254614458287393459718814}{42986354551601912069219882539477203904601618893911791932425} a^{7} + \frac{14962225050049039429511534324990384995016158917656849803754}{42986354551601912069219882539477203904601618893911791932425} a^{6} + \frac{75983788172164230108905338497727371896237481004416932962}{216011831917597548086532073062699517108550848713124582575} a^{5} + \frac{5873015887489049606673563743998657085252378418252915582923}{14328784850533970689739960846492401301533872964637263977475} a^{4} + \frac{12560440962340653939050208228059900845864388978024643880391}{42986354551601912069219882539477203904601618893911791932425} a^{3} - \frac{426653759545102887986793242681434328269571293915273768319}{1719454182064076482768795301579088156184064755756471677297} a^{2} + \frac{21122775598957470630650609587351585709914498968138749779207}{42986354551601912069219882539477203904601618893911791932425} a + \frac{2786525748653177772687851965414252121113419888761695646888}{42986354551601912069219882539477203904601618893911791932425}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46111717836.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||