Properties

Label 16.16.175...176.1
Degree $16$
Signature $[16, 0]$
Discriminant $1.754\times 10^{23}$
Root discriminant \(28.36\)
Ramified primes $2,79$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_4\times S_4$ (as 16T181)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1)
 
gp: K = bnfinit(y^16 - 20*y^14 + 158*y^12 - 624*y^10 + 1287*y^8 - 1336*y^6 + 650*y^4 - 116*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1)
 

\( x^{16} - 20x^{14} + 158x^{12} - 624x^{10} + 1287x^{8} - 1336x^{6} + 650x^{4} - 116x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[16, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(175415570277650636210176\) \(\medspace = 2^{52}\cdot 79^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(28.36\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{27/8}79^{1/2}\approx 92.21249671842511$
Ramified primes:   \(2\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a-\frac{1}{4}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{14}-\frac{77}{4}a^{12}+\frac{573}{4}a^{10}-512a^{8}+\frac{3519}{4}a^{6}-\frac{1257}{2}a^{4}+\frac{583}{4}a^{2}-\frac{7}{4}$, $a^{14}-\frac{77}{4}a^{12}+\frac{573}{4}a^{10}-512a^{8}+\frac{3519}{4}a^{6}-\frac{1257}{2}a^{4}+\frac{583}{4}a^{2}-\frac{3}{4}$, $\frac{1}{2}a^{14}-\frac{19}{2}a^{12}+\frac{139}{2}a^{10}-\frac{485}{2}a^{8}+\frac{801}{2}a^{6}-\frac{525}{2}a^{4}+48a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{14}-\frac{19}{4}a^{13}+\frac{19}{2}a^{12}+35a^{11}-\frac{139}{2}a^{10}-\frac{499}{4}a^{9}+\frac{485}{2}a^{8}+\frac{435}{2}a^{7}-\frac{801}{2}a^{6}-\frac{667}{4}a^{5}+\frac{525}{2}a^{4}+\frac{211}{4}a^{3}-48a^{2}-\frac{17}{2}a$, $\frac{1}{4}a^{15}-\frac{19}{4}a^{13}+35a^{11}-\frac{499}{4}a^{9}+\frac{435}{2}a^{7}-\frac{667}{4}a^{5}+\frac{211}{4}a^{3}-\frac{17}{2}a+1$, $\frac{1}{4}a^{15}-5a^{13}+\frac{79}{2}a^{11}-\frac{1}{4}a^{10}-156a^{9}+\frac{7}{2}a^{8}+\frac{643}{2}a^{7}-\frac{67}{4}a^{6}-\frac{663}{2}a^{5}+31a^{4}+\frac{623}{4}a^{3}-\frac{69}{4}a^{2}-26a+2$, $\frac{1}{4}a^{14}-5a^{12}+\frac{1}{2}a^{11}+\frac{77}{2}a^{10}-\frac{29}{4}a^{9}-\frac{283}{2}a^{8}+37a^{7}+\frac{495}{2}a^{6}-\frac{311}{4}a^{5}-176a^{4}+\frac{119}{2}a^{3}+\frac{147}{4}a^{2}-\frac{57}{4}a+\frac{5}{2}$, $\frac{1}{4}a^{15}-\frac{19}{4}a^{13}+35a^{11}-\frac{499}{4}a^{9}+\frac{435}{2}a^{7}-\frac{667}{4}a^{5}+\frac{207}{4}a^{3}-\frac{9}{2}a$, $\frac{1}{4}a^{15}-5a^{13}+39a^{11}-\frac{595}{4}a^{9}-\frac{1}{4}a^{8}+\frac{569}{2}a^{7}+\frac{5}{2}a^{6}-\frac{1015}{4}a^{5}-\frac{27}{4}a^{4}+\frac{385}{4}a^{3}+3a^{2}-\frac{47}{4}a+\frac{3}{4}$, $a^{15}+\frac{1}{2}a^{14}-\frac{39}{2}a^{13}-\frac{19}{2}a^{12}+\frac{297}{2}a^{11}+\frac{279}{4}a^{10}-\frac{2217}{4}a^{9}-\frac{983}{4}a^{8}+1041a^{7}+\frac{1659}{4}a^{6}-\frac{3675}{4}a^{5}-\frac{1143}{4}a^{4}+\frac{713}{2}a^{3}+\frac{229}{4}a^{2}-\frac{203}{4}a+\frac{5}{4}$, $\frac{1}{2}a^{15}-\frac{39}{4}a^{13}+\frac{149}{2}a^{11}-\frac{1}{4}a^{10}-\frac{1123}{4}a^{9}+\frac{7}{2}a^{8}+539a^{7}-\frac{67}{4}a^{6}-\frac{1993}{4}a^{5}+31a^{4}+\frac{415}{2}a^{3}-\frac{69}{4}a^{2}-\frac{61}{2}a+2$, $\frac{1}{4}a^{14}-5a^{12}-\frac{1}{2}a^{11}+\frac{77}{2}a^{10}+\frac{29}{4}a^{9}-\frac{283}{2}a^{8}-37a^{7}+\frac{495}{2}a^{6}+\frac{311}{4}a^{5}-176a^{4}-\frac{119}{2}a^{3}+\frac{147}{4}a^{2}+\frac{57}{4}a+\frac{5}{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{19}{4}a^{13}+5a^{12}+\frac{69}{2}a^{11}-\frac{77}{2}a^{10}-\frac{235}{2}a^{9}+\frac{283}{2}a^{8}+\frac{361}{2}a^{7}-\frac{495}{2}a^{6}-89a^{5}+176a^{4}-\frac{27}{4}a^{3}-\frac{147}{4}a^{2}+\frac{23}{4}a-\frac{3}{2}$, $\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{19}{4}a^{13}-5a^{12}+\frac{69}{2}a^{11}+\frac{77}{2}a^{10}-\frac{235}{2}a^{9}-\frac{283}{2}a^{8}+\frac{361}{2}a^{7}+\frac{495}{2}a^{6}-89a^{5}-176a^{4}-\frac{27}{4}a^{3}+\frac{147}{4}a^{2}+\frac{23}{4}a+\frac{3}{2}$, $\frac{3}{4}a^{15}+\frac{1}{2}a^{14}-\frac{29}{2}a^{13}-\frac{39}{4}a^{12}+\frac{435}{4}a^{11}+\frac{147}{2}a^{10}-\frac{789}{2}a^{9}-\frac{1065}{4}a^{8}+\frac{2797}{4}a^{7}+465a^{6}-\frac{1079}{2}a^{5}-\frac{1371}{4}a^{4}+\frac{305}{2}a^{3}+\frac{177}{2}a^{2}-\frac{13}{2}a-2$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2484052.66943 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 2484052.66943 \cdot 1}{2\cdot\sqrt{175415570277650636210176}}\cr\approx \mathstrut & 0.194346473721 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 20*x^14 + 158*x^12 - 624*x^10 + 1287*x^8 - 1336*x^6 + 650*x^4 - 116*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\times S_4$ (as 16T181):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 96
The 20 conjugacy class representatives for $C_4\times S_4$
Character table for $C_4\times S_4$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.80896.1, 8.8.6544162816.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Minimal sibling: 12.12.1338314592572407808.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.3.0.1}{3} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$8$$2$$52$
\(79\) Copy content Toggle raw display 79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)