Normalized defining polynomial
\( x^{16} - 20x^{14} + 158x^{12} - 624x^{10} + 1287x^{8} - 1336x^{6} + 650x^{4} - 116x^{2} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[16, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(175415570277650636210176\)
\(\medspace = 2^{52}\cdot 79^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(28.36\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{27/8}79^{1/2}\approx 92.21249671842511$ | ||
Ramified primes: |
\(2\), \(79\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a-\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{14}-\frac{77}{4}a^{12}+\frac{573}{4}a^{10}-512a^{8}+\frac{3519}{4}a^{6}-\frac{1257}{2}a^{4}+\frac{583}{4}a^{2}-\frac{7}{4}$, $a^{14}-\frac{77}{4}a^{12}+\frac{573}{4}a^{10}-512a^{8}+\frac{3519}{4}a^{6}-\frac{1257}{2}a^{4}+\frac{583}{4}a^{2}-\frac{3}{4}$, $\frac{1}{2}a^{14}-\frac{19}{2}a^{12}+\frac{139}{2}a^{10}-\frac{485}{2}a^{8}+\frac{801}{2}a^{6}-\frac{525}{2}a^{4}+48a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{14}-\frac{19}{4}a^{13}+\frac{19}{2}a^{12}+35a^{11}-\frac{139}{2}a^{10}-\frac{499}{4}a^{9}+\frac{485}{2}a^{8}+\frac{435}{2}a^{7}-\frac{801}{2}a^{6}-\frac{667}{4}a^{5}+\frac{525}{2}a^{4}+\frac{211}{4}a^{3}-48a^{2}-\frac{17}{2}a$, $\frac{1}{4}a^{15}-\frac{19}{4}a^{13}+35a^{11}-\frac{499}{4}a^{9}+\frac{435}{2}a^{7}-\frac{667}{4}a^{5}+\frac{211}{4}a^{3}-\frac{17}{2}a+1$, $\frac{1}{4}a^{15}-5a^{13}+\frac{79}{2}a^{11}-\frac{1}{4}a^{10}-156a^{9}+\frac{7}{2}a^{8}+\frac{643}{2}a^{7}-\frac{67}{4}a^{6}-\frac{663}{2}a^{5}+31a^{4}+\frac{623}{4}a^{3}-\frac{69}{4}a^{2}-26a+2$, $\frac{1}{4}a^{14}-5a^{12}+\frac{1}{2}a^{11}+\frac{77}{2}a^{10}-\frac{29}{4}a^{9}-\frac{283}{2}a^{8}+37a^{7}+\frac{495}{2}a^{6}-\frac{311}{4}a^{5}-176a^{4}+\frac{119}{2}a^{3}+\frac{147}{4}a^{2}-\frac{57}{4}a+\frac{5}{2}$, $\frac{1}{4}a^{15}-\frac{19}{4}a^{13}+35a^{11}-\frac{499}{4}a^{9}+\frac{435}{2}a^{7}-\frac{667}{4}a^{5}+\frac{207}{4}a^{3}-\frac{9}{2}a$, $\frac{1}{4}a^{15}-5a^{13}+39a^{11}-\frac{595}{4}a^{9}-\frac{1}{4}a^{8}+\frac{569}{2}a^{7}+\frac{5}{2}a^{6}-\frac{1015}{4}a^{5}-\frac{27}{4}a^{4}+\frac{385}{4}a^{3}+3a^{2}-\frac{47}{4}a+\frac{3}{4}$, $a^{15}+\frac{1}{2}a^{14}-\frac{39}{2}a^{13}-\frac{19}{2}a^{12}+\frac{297}{2}a^{11}+\frac{279}{4}a^{10}-\frac{2217}{4}a^{9}-\frac{983}{4}a^{8}+1041a^{7}+\frac{1659}{4}a^{6}-\frac{3675}{4}a^{5}-\frac{1143}{4}a^{4}+\frac{713}{2}a^{3}+\frac{229}{4}a^{2}-\frac{203}{4}a+\frac{5}{4}$, $\frac{1}{2}a^{15}-\frac{39}{4}a^{13}+\frac{149}{2}a^{11}-\frac{1}{4}a^{10}-\frac{1123}{4}a^{9}+\frac{7}{2}a^{8}+539a^{7}-\frac{67}{4}a^{6}-\frac{1993}{4}a^{5}+31a^{4}+\frac{415}{2}a^{3}-\frac{69}{4}a^{2}-\frac{61}{2}a+2$, $\frac{1}{4}a^{14}-5a^{12}-\frac{1}{2}a^{11}+\frac{77}{2}a^{10}+\frac{29}{4}a^{9}-\frac{283}{2}a^{8}-37a^{7}+\frac{495}{2}a^{6}+\frac{311}{4}a^{5}-176a^{4}-\frac{119}{2}a^{3}+\frac{147}{4}a^{2}+\frac{57}{4}a+\frac{5}{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{14}-\frac{19}{4}a^{13}+5a^{12}+\frac{69}{2}a^{11}-\frac{77}{2}a^{10}-\frac{235}{2}a^{9}+\frac{283}{2}a^{8}+\frac{361}{2}a^{7}-\frac{495}{2}a^{6}-89a^{5}+176a^{4}-\frac{27}{4}a^{3}-\frac{147}{4}a^{2}+\frac{23}{4}a-\frac{3}{2}$, $\frac{1}{4}a^{15}+\frac{1}{4}a^{14}-\frac{19}{4}a^{13}-5a^{12}+\frac{69}{2}a^{11}+\frac{77}{2}a^{10}-\frac{235}{2}a^{9}-\frac{283}{2}a^{8}+\frac{361}{2}a^{7}+\frac{495}{2}a^{6}-89a^{5}-176a^{4}-\frac{27}{4}a^{3}+\frac{147}{4}a^{2}+\frac{23}{4}a+\frac{3}{2}$, $\frac{3}{4}a^{15}+\frac{1}{2}a^{14}-\frac{29}{2}a^{13}-\frac{39}{4}a^{12}+\frac{435}{4}a^{11}+\frac{147}{2}a^{10}-\frac{789}{2}a^{9}-\frac{1065}{4}a^{8}+\frac{2797}{4}a^{7}+465a^{6}-\frac{1079}{2}a^{5}-\frac{1371}{4}a^{4}+\frac{305}{2}a^{3}+\frac{177}{2}a^{2}-\frac{13}{2}a-2$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2484052.66943 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{16}\cdot(2\pi)^{0}\cdot 2484052.66943 \cdot 1}{2\cdot\sqrt{175415570277650636210176}}\cr\approx \mathstrut & 0.194346473721 \end{aligned}\] (assuming GRH)
Galois group
$C_4\times S_4$ (as 16T181):
A solvable group of order 96 |
The 20 conjugacy class representatives for $C_4\times S_4$ |
Character table for $C_4\times S_4$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.80896.1, 8.8.6544162816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | 12.12.1338314592572407808.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $16$ | $8$ | $2$ | $52$ | |||
\(79\)
| 79.2.1.2 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
79.2.0.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
79.2.0.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
79.2.1.2 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
79.2.1.2 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
79.2.0.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
79.2.0.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
79.2.1.2 | $x^{2} + 79$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |